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Abstract

Biological datasets, such as our case of study, coral seg-
mentation, often present scarce and sparse annotated image
labels. Transfer learning techniques allow us to adapt exist-
ing deep learning models to new domains, even with small
amounts of training data. Therefore, one of the main chal-
lenges to train dense segmentation models is to obtain the
required dense labeled training data. This work presents a
novel pipeline to address this pitfall and demonstrates the
advantages of applying it to coral imagery segmentation.
We fine tune state-of-the-art encoder-decoder CNN models
for semantic segmentation thanks to a new proposed aug-
mented labeling strategy. Our experiments run on a recent
coral dataset [4], proving that this augmented ground truth
allows us to effectively learn coral segmentation, as well as
provide a relevant score of the segmentation quality based
on it. Our approach provides a segmentation of compara-
ble or better quality than the baseline presented with the
dataset and a more flexible end-to-end pipeline.

1. Introduction

Semantic image segmentation, or dense image labeling,
assigns a category label to each image pixel. This problem
has been widely studied in the past and, as many other ap-
plications, it has achieved extraordinary results with deep
learning based approaches [22]. However, there are many
domains where obtaining large amounts of good quality
dense labeled segmentation data, which is required to train
such approaches, is highly costly and tedious to obtain.

Tasks to monitor different aspects of wildlife can highly
benefit of automatic semantic segmentation approaches,
from animal recognition in videos [18] to coral identifi-
cation in underwater survey imagery [4]. Unfortunately,
datasets of this kind often only provide a weakly labeled
ground truth. This is the case in our work, which is fo-
cused on quantifying coral abundance. Coral reefs have a
high ecological and economical value [6]. Sadly, in the past

Figure 1. Coral segmentation pipeline based on CNN segmenta-
tion model. Step 1: sparse ground truth available is augmented to
facilitate training. Step 2: input multimodal data is combined to
use the more discriminative channels. Step 3: fine-tuning.

decades a variety of anthropogenic stressors caused a severe
decline in coral coverage around the world [7]. This rapid
change rate requires creating automatic methods for quick
evaluation of reef health, that is currently done manually.

Recent work on this topic proposed a system to clas-
sify patches from underwater imagery into several classes
of common corals and other textures that occur frequently
in underwater scenarios [4]. This work highlights the ben-
efits of using fluorescence data to more easily discriminate
among coral and non coral regions. Following their con-
clusions, we explore the use of RGB combined with fluo-
rescence channels, but we target an end-to-end dense coral
segmentation per image, as opposed to training per-patch
classification. This problem can be formulated as an image
segmentation into coral/no-coral. Our work (summarized
in Fig. 1) addresses two challenges to achieve this goal:

• Lack of large amounts of accurate labeled data. The
available datasets do not have detailed segmentation
ground truth, but only a few sparse labeled points.

• How to use multimodal input (RGB + fluorescence)
with a state-of-the-art image segmentation model.
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The main contribution of our work is an effective ap-
proach to fine-tune state-of-the-art encoder-decoder CNN
models for semantic segmentation with a combination of
multi-modal data when only very sparse ground truth labels
are available. We first study and propose different strategies
to augment the sparse coral labeled data available into dense
labels. This enables us to fine-tune existing CNN models
even if there is not a large amount of labeled data. We also
perform an exhaustive evaluation of different ways to com-
bine the fluorescence and RGB information.

Our experimental results demonstrate how the proposed
simple augmentation of ground truth labels provides valu-
able and effective additional information to train an end-
to-end coral segmentation model. Our approach presents
several advantages with respect to prior work based on in-
dividual patch classification, such as a better fit to the coral
regions contours and a decoupled dependency on the ex-
istence of multimodal data. This is an important property
of our pipeline, that it allows us to take advantage of the
multi-modal data only during training to augment the la-
beled data, but still train a model that does not require those
input channels, i.e., accepts only RGB input. This is rele-
vant because often the fluorescence information is not avail-
able. This pipeline can also be applied to other multi-modal
information such as other multiespectral data the same way
we applied it to fluorescence information.

Another significant insight from the experiments on this
work is the effective and meaningful segmentation results
evaluation that can be obtained with the presented perfor-
mance scores based on the augmented ground truth.

2. Related Work
We next discuss the most relevant topics to the presented

approach are state-of-the-art methods on semantic segmen-
tation and strategies to deal with a lack of the required train-
ing data. Besides, we also comment on related works about
the particularities of automatic semantic segmentation of
underwater imagery from coral reefs.

Semantic image segmentation. Superpixel segmentation
approaches, such as SLIC [1] or SEEDs [17] algorithms,
typically provide an over-segmentation of the input im-
age, and have been the basis for earlier works on seman-
tic image segmentation based on superpixel classification
and superpixel based label propagation. On the other hand,
successful encoder-decoder CNN based segmentation ap-
proaches [2, 12] have achieved state-of-the-art results on
semantic segmentation problems lately. The recent survey
on image segmentation by Zhu et al [22] provides a more
detailed discussion of solutions for this long studied prob-
lem. Our approach takes both recent CNN based end-to-end
semantic segmentation models and superpixel segmentation
algorithms as important ingredients. Besides, it is designed

to implicitly consider the context information around each
superpixel. Many prior work highlights the importance of
modeling the context information for different visual clas-
sification tasks, and so do many previous approaches on the
particular problem of semantic image segmentation. For
example, Yong et al [20] presented an approach where se-
mantic context modeling helps a visual recognition task for
novelty detection in wildlife scenes, or Mostajabi et al [14]
highlighted the improvements obtained in superpixel classi-
fication by using superpixel context.

Working with biological imagery, it is very common to
find weakly labeled datasets. This presents a lot of chal-
lenges and opportunities to develop weakly labeled training
methods. For example, Venkitasubramanian at al [18] pro-
pose how to train animal recognition system in videos with
weak supervision, thanks to the use of multimodal data.
This lack of enough training data is specially crucial in se-
mantic segmentation approaches, because acquiring accu-
rate segmentation is a tedious task, often unfeasible.

Lack of training data. The lack of (good) labeled train-
ing data is a common issue when building and training deep
learning based systems. We can find multiple strategies to
overcome this problem, briefly discussed next.

Data augmentation, i.e., generating additional data by
altering the original labeled data, is a very common solu-
tion. Many works have used variations of this strategy, in-
cluding for example the well know Alexnet model [11], that
was trained augmenting the training data by applying im-
age translations and horizontal reflections and altering the
intensities of the RGB values. A more recent solution to
augment the training set, or to actually completely generate
an artificial data set, is to generate synthetic data [8, 15].
This strategy provides perfect ground truth labels of plenty
of concepts, as long as the image rendering or simulation
platform support that information. This type of methods
do not always transfer properly from data to real data, in
part because for many problems is hard to simulate the right
amount of variability needed for the training data. Other re-
cent work proposing how to deal with the fact of no labeled
data [16] at all, describes how to adapt an existing model
when there is no training data available for the new domain.

Other common strategy to deal with lack of good training
data is to build approaches that can learn from weakly la-
beled data, which is much easier to obtain. Lu et at recently
presented a survey on different approaches to train seman-
tic segmentation from noisy and weakly labeled data [13],
which discusses these problems and presents many related
solutions. This work covers the augmentation of weak la-
beling focusing on detecting the noisy labels. They propose
a pipeline which allows to segment the images with only
image-level labels introducing a intermediate labelling vari-
able so that they can learn which are noisy labels.



Sometimes weak label means per-image label as op-
posed to per-pixel, e.g., in the work from Kolesnikov and
Lampert [10], that proposes a new composite loss function
that allows us to train CNN models for image segmentation
using weakly labeled data consisting of per-image class la-
bels. Other times, like in our case, weak label means that
the labeling is very sparse, as opposed to having a dense
per pixel labeling. Vernaza et al [19] propose how to si-
multaneously learn a label-propagator and the image seg-
mentation model. This approach propagates the ground
truth labels from a few traces, to estimate the main object
boundaries in the image and provide a label for each pixel.
This work is maybe the closest related to our approach in
the sense that they also demonstrate benefits when train-
ing CNN based segmentation using the propagated sparse
available labels. Differently from this work, we do not
have continuous traces as labels, but a sparse grid of points
equally spread over the image, as detailed in next section,
and we do not learn how to propagate the available labels.
Instead, we take advantage of the fluorescence data avail-
able to augment the labeled data. Our work is inspired by
the discussed prior work, but none of the existing examples
demonstrates how to train a dense semantic segmentation
model with such sparse and isolated labeled points as those
available for the coral datasets.

Coral imagery segmentation. Obtaining good quality
images from coral natural scenarios and their annotations
is a challenging task, as well as automatically recognizing
the corals on those images [4], [5].

As previously mentioned, our work studies and proposes
how to face the challenges to enable latest results on seman-
tic segmentation using CNNs to the segmentation of coral
imagery. Prior work has demonstrated how the use of multi-
modal data can facilitate this problem, in particular combin-
ing RGB images with fluorescence images [4]. This work
has shown that CNN based approaches provide a higher
performance than other methods evaluated in earlier works,
such us SVM approaches [3] concerning multi-modal data
in coral segmentation. We build upon these conclusions,
but instead of building a per-patch classifier, we work on an
end-to-end segmentation model based on fine-tuning state-
of-the-art models from other domains, such as [2], as de-
scribed in the next section.

3. Proposed Segmentation Approach
This section details the proposed approach to achieve

dense semantic segmentation using sparse ground truth.

3.1. Problem statement

The main challenge considered in this work is how to
learn a good semantic image segmentation given a very
sparse ground truth to learn the model.

(a) RGB (b) Fluorescence (c) Original-GT
Figure 2. Three examples of the input data available in the dataset.
Each row contains corresponding (a) original RGB image, (b) fluo-
rescence image and (c) available sparse ground truth labels. These
are single pixel labels, enlarged for visualization purposes. White
pixels are coral. Black pixe0ls are non-coral.

The input for our particular problem is a set of multi-
modal image channels (in particular, RGB and fluorescence
images) and a sparse set of labels. The challenges from us-
ing the multi-modal inputs are not only about how to com-
bine them but also that the different sensor images can be
misaligned. As far as the ground truth is concerned, the
main challenge is to find how to augment a sparse ground
truth into a dense one. Fig. 2 shows some examples of the
input data, highlighting the very sparse labeled set of points
in the images. The images have 1078x976 resolution but the
ground truth has only 200 pixels labeled per image. Tak-
ing into account that the dataset has 142 training images,
we only have 28400 training pixels (much smaller than the
amount of pixels we have to classify in a single image).

The expected output for the semantic segmentation is a
matrix where each pixel of the input image is classified (in
our case into coral or no-coral classes).

3.2. Learning the coral segmentation model

Our proposed segmentation approach consists of the
three steps detailed next and summarized in Fig. 1.

3.2.1 Ground truth augmentation

The most relevant challenge is the very sparse ground truth,
because typically to train a CNN for semantic segmentation
dense ground truth is needed. We evaluate three strategies
to obtain this dense labeling, as shown in Fig. 3.

Patches-GT. This strategy is the more straightforward.
We expand the labeled ground truth pixels into labeled
patches around those pixels. This strategy assumes that
the surrounding pixels of a labeled one are the same kind.



Figure 3. Ground truth augmentation methods that we considered.
(a) small patches around original-GT labeled pixels; (b) SLIC and
(c) SEEDS superpixels, computed on RGB or fluorescence im-
ages, used to expand the original-GT. SLIC and SEEDs can be
augmented using either RGB or fluorescence image superpixels
but fluorescence yields a much better segmentation.

Several patch sizes were tested and 25x25 pixel patches
gave the best results (using 1078 x 976 images) providing
125000 labeled pixels per image instead of 200.

Superpixels (SLIC-GT, SEEDS-GT). We apply these
superpixel segmentation methods to the images. This
allows us to match the original labeled pixels to each seg-
mentation. This method gives a better and more accurate
solution. The outcome augmentations of SLIC [1] and
SEEDS [17] superpixels are similar. Visually, SEEDS-GT
fits better to the shape of the coral. These methods can fail
specially when the corals are too small or the have holes.
The Fig. 4 shows some cases of failure of the SEEDS-GT.
Nevertheless, these approaches seem pretty similar to
the RGB images. These superpixel augmentation can be
obtained from any of the multi-modal images (see Fig. 3).

This step is independent from the segmentation predic-
tion. Therefore, this augmentation can be obtained with
fluorescence images and the segmentation output from the
RGB images. The experimental results from the next Sec. 4
analyze the differences of using with different augmented
ground truths in our pipeline.

3.2.2 Input channel combination

This step combines the available input channels. We evalu-
ate several combinations of the available multi-modal data
(as summarized in Fig. 5).

Using 3-channel input combination. First, since the
base CNN model we use for fine-tuning has a three channel

Input Image Augmented-GT Output

Figure 4. Even though the Augmented-GT (SEEDS-GT in these
images) used to train our system is noisy, these examples show
that the final segmentation obtained with our trained model de-
tects regions that are missed in the augmented GT computed for
those examples. We have manually highlighted incorrect predic-
tions with red squares and good predictions with green squares.

input [2], the intuitive approach is to select three out of the
available channels. The combinations considered are based
on previous studies on the different channels [4]. This study
concludes that the two first fluorescence channels are more
discriminating than the RGB channels and that within the
RGB channels, the red channel is the most important.

Other input combination. Another insight from prior
work we consider is that the different modalities available
may not be perfectly registered. Therefore, this may impact
the training if joining the inputs in earlier layers, as opposed
to later ones. Then, other strategies we have evaluated use
all the input channels available. They are based on com-
bining the output of two different CNNs (one trained with
fluorescence and other with RGB channels). This has been
implemented in two ways: training two CNNs separately
and then combining their outputs, or training them together.

3.2.3 Fine-tuning existing segmentation CNN model

The final step consists of training the model with the
augmented-GT. The state-of-the-art image segmentation
systems use CNN based models, which offer excellent ac-
curacy. Our goal is to adapt existing semantic segmentation
models to our target classes. In particular, we fine-tune Seg-
Net [2] model with the coral images.

Segnet is a well-known encoder-decoder CNN for se-
mantic segmentation, trained on urban scenes. It has a
symmetrical structure in terms of convolutions and decon-
volutions which allows to learn significantly well. Other
approaches use only one deconvolution layer at the end
of the network, as proposed in [12]. For example, good
results on ImageNet scene segmentation challenges [21]
were achieved applying this technique to the RESNET-50
model [9]. However, it performed worse (5% less accuracy)
than using SegNet for our problem, maybe due to the larger
number of deconvolutions applied in Segnet.



Figure 5. Different strategies to combine available image channels
to train an end-to-end segmentation model: (a) fine-tuning with a
3-channel input using RGB data only; (c) using fluorescence data
only; (d) combination of both (Fluor1 + Fluor2 + Red); (b)
joining two of the fine-tuned models.

We keep the original SegNet for finetuning with three in-
put channel combinations, while we performed slight mod-
ifications to its original network design for the experiments
where we join two net structures. We also use the median
frequency balancing [2] in the loss function (1). We use the
cross-entropy loss [12] as the objective function for training
the network. Adding the median frequency balancing (φ) to
this function looks like this:

J(θ) = −
1

m

[
m∑
i=1

φy(i)

[
y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i))

]]
,

(1)
where m is the number of labeled pixels, y(i) is the label,
ŷ(i) is the CNN predicted output. This gives a better per-
formance on our data-set. Every class is weighted in the
loss function with the ratio of the median of class frequen-
cies computed on the entire training set divided by the class
frequency. This implies the classes with low number of la-
beled pixels will have a higher weight. Thus, the CNN is not
affected by the differences on the number of class samples.

4. Experiments
The following experiments analyze different aspects and

variations of our approach for coral segmentation and com-
pare the results obtained with prior work on the same data.

4.1. Set-up

Data-set. All the following experiments are run on the
Eilat Fluorescence Corals dataset [4]. The dataset consists
of 212 coral annotated multimodal image-pairs: RGB and
fluorescence images. There are 200 labeled pixels per im-
age, assigning to each of them a label from coral and non-

Augmented-GT Manual-GT Intersection

Figure 6. Examples of Augmented-GT and Manual-GT. The in-
tersection of both shows green/red/yellow pixels when labeled as
coral in both/only manual-GT/only augmented-GT respectively.

coral classes1. Note that this ground truth is very sparse,
since images have 1078 x 976 resolution. The data is split
into a training-set of 142 randomly selected image-pairs,
and a test-set with the remaining 70 image-pairs.

Evaluation. We use standard accuracy, recall and preci-
sion scores for the evaluation of the results computed ac-
cording to different strategies:

Original-GT based sparse scores. The scores computed
based on the original ground truth (Original-GT) are not
fully representative, as it will be shown next. Intuitively,
200 pixels labeled out of around a million per image are not
a dense ground truth for dense image labeling.

Superpixel-GT and Manual-GT based dense scores. The
augmented ground truth we generate based on superpix-
els (Superpixel-GT) is an approximated but dense labeling,
which as shown next gives a reliable evaluation. The fact
of having very sparse ground truth is a challenge not only
to train but also to evaluate in a meaningful way the dense
labeling results. The representativity of this augmented
ground truth can be seen in multiple visual results. Besides,
we include comparisons using a few (7% of the testing data)
detailed manual segmentations (Manual-GT) performed by
an expert. This helps to further validate the Augmented-
GT and the segmentation results. The average accuracy of
the values in the augmented-GT with respect to the Manual-
GT is of 93% (for the 5 images with Manual-GT available).
Fig. 6 shows examples comparing these two segmentations.

4.2. Ground truth augmentation

Our work copes with the challenge of having a very
sparse ground truth available to train a dense image label-
ing/segmentation model. The following results evaluate the
use of different augmented ground truth. Some examples
are shown in Fig. 7. All of them use the same model to be
fine-tuned (SegNet [2]) and the same three input channels

1http://datadryad.org/resource/doi:10.5061/dryad.t4362



(a) (b) (c) (d) (e) (f)
Figure 7. Coral segmentation using different augmented ground truth strategies. Two examples of corresponding RGB (a) and fluorescence
(b) images and the coral segmentation obtained using a model trained with the sparse Original-GT (c) and with several augmented-GT:
Patches-GT (d), SEED-GT (e) and SLIC-GT (f). Superpixel ground truths yield more accurate results.

Table 1. Coral segmentation (average pixel classification accu-
racy). Training and evaluation with different ground truth (GT).

Evaluation: Original-GT Patches-GT SLIC-GT SEEDS-GT
Training: (sparse) (dense) (dense)
Original-GT 0.56 0.53 0.43 0.42
Patches-GT 0.77 0.80 0.67 0.67
SLIC-GT 0.81 0.80 0.89 0.90
SEEDS-GT 0.78 0.77 0.85 0.86

(two fluorescence channels and Red channel from RGB im-
age). Note how noisy the results are when training with
a sparse ground truth. The models trained with Original-
GT and Patches-GT also give inaccurate predictions on the
edges due to the lack of labeling on those regions, i.e., the
patches-GT provides a segmentation with squared artifacts.

Table 1 summarizes these experiments. Each row shows
the results for a different training option. Each column
shows the accuracy computed over different sets of pixels
(e.g., the evaluation with Original-GT means we compute
the accuracy considering only the 200 labeled pixels per im-
age). We can observe that the superpixel based approaches
present better quantitative and qualitative results. These re-
sults illustrate how the proposed augmented ground truth is
more suitable for training and more representative for the
evaluation, as we analyze further in the following subsec-
tion 4.4 experiments. Out of the box superpixel segmenta-
tion gives much better results when computed on the fluo-
rescence images, rather than on the RGB images, as it can
be seen in Fig. 8. This is expected, since the fluorescence
values are much higher on living beings in the scene images.

Our proposed pipeline allows us to take advantage of this
multimodal input for the ground truth augmentation but still
train the segmentation model with only one data modality.
Even though the augmented ground truth based on super-
pixels is approximated, the model can still learn the coral
regions very robustly. It even segments coral regions that
were not included correctly as coral ground truth (as it can
be seen in the examples in Fig. 4).

RGB Fluorescence

Figure 8. Superpixel segmentation of the image (red boundaries).
Segmentation on fluorescence images fits better the coral regions.

4.3. Input channel combinations

These experiments evaluate different ways to combine
the available input channels, i.e., RGB and fluorescence im-
age channels, as explained in Sec. 3. The best results were
obtained finetuning directly the original SegNet model, us-
ing the augmented ground truth. In particular, we consider
SEEDS-GT and SLIC-GT, since they performed clearly bet-
ter than the other options considered in previous subsection.

A summary of the results of the different three input
channel combinations experiments is shown in Table 2.
Fig. 9 shows visual examples of these experiments. Every
combination has been trained with varying hyperparame-
ters to get the best possible model. The configuration which
gives better results uses the median frequency balancing,
training 50k iterations with a learning rate of 2x10−4.

Additional experiments were carried out using all input
channels as described in previous section:

• Training a fine-tuned CNN for each modality and join-
ing the output of their probabilities for each class.



RGB Fluorescence R+G+B F1 + F2 + F3 R+ F1 + F2 Gray + F1 + F2

Figure 9. Coral segmentation using the proposed augmented-GT and different input channel combinations. The results of the different
combinations are detailed in Table 2. The Gray + F1 + F2 combination yields the best qualitative results.

Table 2. Coral segmentation (classification results per pixel) with
different 3-channel combinations as input to finetune SegNet
model.
3-Channel
combinations

Average
Accuracy

Coral
Recall

No-coral
Recall

Coral
Precision

No-coral
Precision

Evaluation: Original-GT based sparse scores
RGB only 0.76 0.43 0.89 0.60 0.80
Fluor only 0.79 0.52 0.90 0.61 0.83
R+ F1 + F2 0.80 0.63 0.87 0.64 0.86
Gray +F1+F2 0.81 0.74 0.84 0.65 0.89

Evaluation: Superpixel-GT based dense scores.
RGB only 0.87 0.43 0.94 0.64 0.89
Fluor. only 0.89 0.44 0.96 0.67 0.91
R+ F1 + F2 0.90 0.52 0.96 0.66 0.92
Gray +F1+F2 0.91 0.61 0.96 0.66 0.95
R,G,B: RGB channels
F1, F2: Fluorescence channels 1, 2 respectively
Gray: The average of the RGB channels

• Fine-tuning a new CNN joining the two fine-tuned
SegNet models after their last convolutional layer.

We discarded to train a model with larger input size because
prior work showed better results with latter join of the data,
probably because the images are not perfectly registered.
We then combined two CNN models, one trained for RGB,
and other for fluorescence data. None of them explored
improved the performance, probably because of too large
of a network model and not enough data to train it.

Although using only RGB information does not achieve
the highest performance, it presents a promising direction.
Our approach can use the fluorescence information only for
the ground truth augmentation, and still train a model that
takes as input RGB only data.

As expected from the results in prior work running
patch classification [4], the best input combination con-
tains fluorescence and RGB channels. Using models trained
with a combination of both types of input data modalities
(Gray + F1 + F2 or R + F1 + F2) provides the highest
average accuracy and recall of the coral class (which is the
most significant for the application of interest).

Table 3. Coral segmentation (classification results per pixel).
Average
Accuracy

Coral
Recall

No-coral
Recall

Coral
Precision

No-coral
Precision

Evaluation: Original-GT based sparse scores
Superpixel
based (Ours)

0.81 0.74 0.84 0.65 0.89

Patch based+ 0.94 0.87 0.96 0.87 0.96
Evaluation: Superpixel-GT based dense scores

Superpixel
based (Ours)

0.91 0.61 0.96 0.66 0.95

Patch based+ 0.90 0.59 0.94 0.63 0.95
* Evaluation: Manual-GT based dense scores

Superpixel
based (Ours)

0.92 0.79 0.93 0.69 0.97

Patch based+ 0.90 0.60 0.95 0.66 0.94
*Computed only over the 5 images with Manual-GT available
+Simulated result using [4] assuming 94% of patches correctly classified

4.4. Patch vs. Superpixel based segmentation

The following results demonstrate the differences and
advantages of the presented approach with respect to the
baseline presented with the studied dataset, a patched-based
classification approach. Table 3 shows comparable over-
all accuracy, recall and precision for both methods. Inter-
estingly, our approach outperforms the patch-based method
when evaluating on the Manual-GT, according to the dense
scores, while the sparse scores benefit the per-patch ap-
proach. A more qualitative analysis of this comparison is
shown in Fig. 10. We can see that superpixel-based ap-
proach produces more coral-like shapes in the segmenta-
tion and follows better the object contours. An important
drawback of the patch-based approach is an implicit lack of
per pixel precision, which does not happen in the presented
end-to-end pipeline. Additional segmentation examples of
the final pipeline configuration are shown in Fig. 11.

Another advantage of our superpixel based approach is
that it provides a more flexible pipeline, where we can take
advantage of valuable multimodal data only during training
(i.e., using it only for the data augmentation).

Moreover, using a metric based on sparse data labels,
when the output is dense, can be less representative than us-



Figure 10. Coral segmentation with patch-based or superpixel-
based (ours) approaches compared to augmented ground truth
(SEEDS-GT). The patch-based shows the simulated output of re-
sults in [4]. Superpixel-based shows results using fine-tuned Seg-
Net using Gray+F1+F2 input channels. The intersection images
show coral pixels correctly (green) and incorrectly (red) labeled.

ing scores based on an approximate but dense ground truth,
as the one we use. The sparse scores are evaluating just
0.0002% of the pixels per image. Our results show the
scores based on the augmented ground truth serve as a good
quality evaluation for the segmentation. The last rows in
Table 3 show how the scores using the available Manual-
GT are closer to those using Superpixel-GT than to scores
obtained using the Original-GT. This verifies the good rep-
resentativity of the augmented ground truth, as shown in
previous Fig. 6.

Although the augmented ground truth has some noise,
i.e., incorrect labeling of both positive and negative pixels,
our results show that the segmentation model is still learned
effectively due to the huge increase in the number of train-
ing data (labeled pixels).

5. Conclusions

We have presented a novel pipeline which makes up for
the lack of labeled data for semantic segmentation training.
This has an important impact on semantic segmentation sce-
narios where the available datasets present sparse and scarce
labels on the annotated images. We demonstrate that this
augmented ground truth allows us to effectively learn the
coral segmentation when finetuning a state-of-the-art CNN
for semantic segmentation. Our results show the benefits
of using the proposed augmentation of sparse image labels.
We have analyzed the influence of variations in the label-
ing augmentation and the experiments show the superpixel
based methods work better than other more direct options.
Besides, we also show how the augmented ground truth can
serve as a more significant way to evaluate the dense seg-

Fluorescence Augmented-GT Segmentation

Figure 11. Coral segmentation results obtained from a model
trained with the augmented (dense) ground truth and Gray +
F1 + F2 input channels. Each row depicts the fluorescence im-
age, augmented ground truth with SEEDS-GT, and the respective
coral segmentation result.

mentation with dense scores.
Following previous results which highlight the benefits

of using fluorescence information to recognize corals in im-
ages, we study different ways of taking advantage of this
kind of multi-modal inputs. We have shown how useful
the multi-modal input is as well in the proposed end-to-end
dense labeling. Our flexible pipeline allows us to relax the
requirements of the multi-modal input, fluorescence in our
case. Since fluorescence data is not always available, a nice
property of our pipeline is that we can still benefit partially
of that type of input for the augmentation (during training),
and still train a segmentation model that does not require it.

As future steps, we plan to explore other state-of-the-art
CNN architectures for semantic segmentation, as well as
studying more sophisticated multi-modal combinations and
labeling augmentation methods.
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