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Abstract
While the study of geometry has mainly concentrated on

single-viewpoint (SVP) cameras, there is growing attention
to more general non-SVP systems. Here we study an im-
portant class of systems that inherently have a non-SVP:
a perspective camera imaging through an interface into a
medium. Such systems are ubiquitous: they are common
when looking into water-based environments. The paper
analyzes the common flat-interface class of systems. It char-
acterizes the locus of the viewpoints (caustic) of this class,
and proves that the SVP model is invalid in it. This may ex-
plain geometrical errors encountered in prior studies. Our
physics-based model is parameterized by the distance of the
lens from the medium interface, beside the focal length. The
physical parameters are calibrated by a simple approach
that can be based on a single-frame. This directly deter-
mines the system geometry. The calibration is then used
to compensate for modeled system distortion. Based on
this model, geometrical measurements of objects are sig-
nificantly more accurate, than if based on an SVP model.
This is demonstrated in real-world experiments.

1. Introduction
There is a growing interest in imaging systems that defy

the single viewpoint (SVP) assumption. Studies have an-
alyzed general imaging models [9, 28], or special cameras
that do not have an SVP [24, 34]. In this work we analyze
a common and important class of non-SVP systems. They
are made of a standard perspective camera looking into a re-
fractive medium through a flat interface. These systems are
commonly used to look at objects in water. In aquaria, the
water body is embedded in the air-based environment con-
taining the camera. Alternatively, an air chamber enclosing
the camera may be embedded in the water, as experienced
by the eyes of human scuba-divers (Fig. 1a) or underwater
robots. Both cases are equivalent as an imaging model.

The importance of analyzing this system class stems
both from its wide relevance in a range of fields and from
the vision challenges it poses. Beside computer vision, this
system class further affects fields such as oceanic engineer-
ing [25, 26], psychology[19], agriculture [39], biology [32],
geology [30] and archaeology. Starting with a motivation
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Figure 1. Vision through flat refractive interfaces. (a) A diver
mask. (b) Fish moving through a transparent tunnel for online
agricultural fish sorting, courtesy of B. Zion. (c) An underwater
microscope for riverbed studies, courtesy of H. Chezar. (d) An
underwater frame. Distortions increase towards the corner.

of human vision, distortions experienced by a lay person
looking into a fish tank become critical for divers (Fig. 1a),
as they use a face mask. As reported by [19], the dis-
tortions cause sever problems of distance perception, that
were yet to be explained. Flat interfaces in aquaria were
used in computer vision studies that developed methods
of stereo [27], three dimensional (3D) recovery by struc-
tured light [10], classification [6], motion analysis [14] and
visibility recovery [16]. In Ref. [39], a flat interface is
used by a computer vision module in a system that sorts
living edible fish in agricultural ponds (Fig. 1b). In field
operations, extensive studies deal with stereo scene recov-
ery [8, 22, 23, 25, 26, 32] by remotely-operated vehicles,
which commonly use of a flat port (window). This inter-
face is also used by in-situ microscopy [30] of river-beds
(Fig. 1c).

The non-SVP nature of flat interface systems has not
been pointed out and analyzed, to the best of our knowl-
edge. The related literature treated these systems as per-
spective [8, 22, 23, 25, 26, 32]. As we show in this paper,
the SVP assumption is very erroneous, in general, in this
system class. Some studies regarded refraction as yielding
a mere radial distortion [26, 32] in an SVP system. This
coincided with reports [32] of unexpected and consistent
errors when fitting an SVP model. We believe that such
errors stem from the non-SVP nature of the system, as we
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Figure 2. A ray from an object at (rw, zw) in the medium intersects
a flat interface at the point rg. The ray continues through the air
chamber until it reaches a perspective lens, at distance d from the
interface. The image coordinate of the ray is ri.

show in this paper. In Fig. 1d, the distortions are seen in a
two dimensional (2D) object. However, the non-SVP nature
induces worse, 3D distortions, which are not a 2D (radial)
mapping of coordinates: objects occluded under SVP may
appear unoccluded by the system, and vice versa. Recently
Ref. [14] concluded that a refraction model is needed for
calibration and scene reconstruction.1

We model this system class, and show that it has a non-
SVP. The caustic surface is derived in closed form and
shown to have significant dimensions. We show that apply-
ing an SVP model can lead to errors in the order of dozens
of pixels. To counter this, we suggest a physics-based cali-
bration scheme for the pixels’ ray map. It is easily applied
in the field and can be based on a single-frame. It allows
changes of zoom and focus settings in situ. Based on the ray
map, geometrical tasks can be performed [33]. We demon-
strate this in underwater experiments, by scuba diving in
the ocean, using different lens settings. Our method signifi-
cantly improves the accuracy of geometrical measurements.

2. Background
Consider a ray passing through a medium and a flat in-

terface, as in Fig. 2. The setup has radial symmetry around
the optical axis z, and r denotes the radial distance from
the optical axis. The ray undergoes refraction when pass-
ing from the medium to a glass interface and again when
passing from the glass to the air, where the camera resides.
According to Snell’s law [3]

n sin θmedium = nglass sin θglass = sin θair , (1)

where n and nglass are respectively the refractive indices of
the medium (e.g. water) and glass, relative to air. Here,
θmedium, θglass, θair are the angles of the ray (relative to z)
in the corresponding media. According to Eq. (1) the glass

1Ref. [21] used a refractive model to recover a non-flat water-interface.

interface (its index of refraction) does not change the refrac-
tion angle θair, for a given θmedium.

While it does not change θair, the glass slightly shifts
radially the ray’s point of exit from the interface, since
θmedium 6= θglass. However, this shift is typically negli-
gible relative to the other distances in the system,2 because
n ∼ nglass. Hence, there is practically no need to correct for
the effect inside the glass, and we may focus on the effects
created by the bulk medium (e.g., water).

In Fig. 2, the distance z is measured from the air inter-
face. The world coordinates of an object embedded in the
medium are (rw, zw). A ray from this object is imaged to a
point on the detector array. In this trajectory, the ray passes
through a point on the interface, at a distance rg from the
axis. The value of rg can be calculated using Fermat’s prin-
ciple: the ray path between two points is the one that is
traversed in the least time. Accounting for the slower speed
of light in the medium due to n, the optical path length is

L = n
√

(rw − rg)2 + z2 +
√

r2
g + d2 , (2)

where d is the distance between the interface and the center
of projection of the lens (at the plane of its entrance pupil).
Thus, similarly to [7], rg should satisfy the condition3

0 =
∂L

∂rg
= n

rg − rw√
(rg − rw)2 + z2

+
rg√

r2
g + d2

. (3)

3. Modeling a Flat-Interface-Medium System
In this paper we look at a system defined by the combined

effect of several elements, following the ray trajectory:
medium → interface → air → perspective camera.
Based on the simple principles described in Sec. 2, we now
model the geometry sensed by this system. Note that in the
heart of the system is an SVP camera. Thus, unless stated
otherwise, the terms focal length, center of projection and
entrance/exit pupil refer only to this internal camera in air.
As we shall show, the system as a whole does not have a
center of projection,4 in general. Intuition into this can be
gained by Fig. 3: rays coming from different objects appear
as if imaged from different points of view.

3.1. Entrance Pupil in the Air
We seek the image coordinates corresponding to an ob-

ject. We thus study the chief ray from the object to the pixel.
After passing the interface to the air, the ray enters the cam-
era lens. Consider first Fig. 2. For a perspective lens,

rg = dri/f , (4)
2In a 5mm thick glass and θmedium = 20◦, the shift is ∼ 0.28mm.
3The maximum of L is ∞. Therefore, the finite extremum of L yields

the minimum path length.
4These effects are lowered by using a dome-shaped interface [31, 35,

36] or corrective optical modules [13, 29]. However, they require precise
alignment to the camera center of projection, in tight tolerances [13]. This
rules out changes of zoom or focus by the lens during the work, in-situ.
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Figure 3. Looking through a flat interface into a medium yields a
non-SVP system despite the use of a perspective camera.

where ri is the radial coordinate of the image pixel corre-
sponding to the ray. Here f is the focal length5 of the cam-
era in air. Using Eq. (4) in Eq. (3) yields

(
rw − d

f
ri

)2
[(

fn

ri

)2

+ (n2 − 1)

]
= z2

w , (5)

which relates the world coordinates (rw, zw) to the image
coordinate ri, as a function of d, f and n.

The setup in Fig. 2 is generalized in Fig. 4a: rather than
a thin lens, it represents a camera having a compound lens.
The chief ray is defined as a ray that passes though the cen-
ter of the lens aperture (iris). The compound lens is con-
sidered as a black box, characterized by two planes: the
entrance pupil and the exit pupil. The chief ray always en-
ters the lens-module as if it crosses the axis point in the
entrance pupil. It then emerges from the lens towards the
detector array as if it crossed the axis point in the exit pupil.
According to [1], the center of projection of the camera is
at the center of the entrance pupil. Hence d is measured
from the glass interface to the entrance pupil. Thus, Eq. (5)
applies to compound lenses, with these definitions.

3.2. Entrance Pupil in the Glass
In the setup illustrated in Fig. 4b, the entrance pupil

of the camera lies directly on the interface, i.e., d = 0.
This special case is the only one in which the system as a
whole has an SVP. The viewpoint is maintained at the en-
trance pupil (in the flat glass). However, the rays passing
through this center of projection change direction due to re-
fraction, as illustrated in Fig. 4b. This model was analyzed
in Ref. [15].

At small angles, θair ¿ 1, Eq. (1) means that
θmedium ≈ θair/n. Since n > 1, the angles are smaller in
the medium. Hence the system (rather than the sole camera)
behaves as if it has a longer effective focal length

f effective
medium = nf . (6)

5The term “focal length,” as commonly used in the computer vision
literature, signifies the distance between the sensor and the lens’ exit pupil.

Hence, if the camera is perspective, then the whole system
is perspective, satisfying

rpersp
i = rw

f effective
medium

zw
. (7)

The linear approximation in Eqs. (6,7) breaks down as θair

increases. The nonlinear relation (Eq. 1) between the ray
angles can be considered as a radial lens distortion. This
was considered as a phenomenon to be modeled by a poly-
nomial function of ri in previous studies [26, 32]. This nu-
merical approximation required empirical calibration of the
polynomial coefficients.

In contrast, now we give an explicit, closed-form expres-
sion for the distortion created by refraction. Using d = 0 in
Eq. (5) directly yields the relation between ri and rw

ri = fn
[
(zw/rw)2 − (n2 − 1)

]− 1
2

. (8)

Using Eqs. (7,8), the distortion correction function is

rpersp
i = f effective

medium

[
n2 − 1 +

(
f effective
medium /ri

)2
]− 1

2
. (9)

Suppose that standard calibration yields f effective
medium at small

angles around the axis in-situ. Then, Eq. (9) directly cor-
rects for the nonlinear radial distortion, if the medium re-
fractive index n is known. This alleviates the need for em-
pirical polynomial calibration.

It must be stressed again that only at d = 0 can such
distortions be modeled as a mere radial pixel shift in an SVP
system. In all other cases, the model and calibration are
more elaborate, as we describe.

3.3. Entrance Pupil in the Medium
It is important to understand that in some cases the effec-

tive center of projection of the camera can lie outside the air
chamber, i.e., inside the medium. This occurs despite hav-
ing all of the lens elements inside the air chamber. For in-
stance, Ref. [1] describes a commercial lens module whose
entrance pupil is 6cm in front of the physical lens barrel.
In such cases, if the lens is adjacent to the interface, the
entrance pupil (thus the center or projection) is effectively
located in the medium. Such a case is depicted in Fig. 4c.
In this case, Eq. (5) still applies, but here d is negative.

4. Caustics
Since generally the system cannot be described using the

SVP model, we aim to characterize it through a ray map of
the pixels. A ray is a parametric line6 whose world coordi-
nates are (R, Z). This ray is projected to a specific pixel.

6The azimuthal coordinate is not needed, since all the chief rays are
meridional rays, as defined in [3]. This is true for a camera in air. Since the
interface is perpendicular to the optical axis, the chief rays remain merid-
ional.
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Figure 4. A lens module looking through a flat interface into a refractive medium. The entrance pupil can lie in the air (a), on the interface (b)
or in the medium (c). In all subfigures the ray is imaged to the same pixel ri, through a fixed focal length f . Moreover, the object distance
zw from the interface is the same. Despite the same ri, f, zw, the radial coordinate of the object rw is different in each subfigure. Note that
in (c), the lens images the ray as if the ray comes from the entrance pupil, although in reality the ray comes from a different direction and
is refracted. Estimating an effective focal length f̂ effective

medium in the medium yields values that increase from (a) to (c).

Thus each pixel corresponds to a line in (R, Z). A parame-
ter α determines the location along the ray,

[
R(ri, α)
Z(ri, α)

]
= p(ri) + αq(ri) , (10)

where p(ri) = [pR, pZ ]T are the coordinates of the interface
surface, q(ri) = [qR, qZ ]T is the ray’s direction vector and
T denotes transposition. From Figs. 2 and 4, note that

sin θair(ri) =
ri√

f2 + r2
i

. (11)

Then,
pR = rg , pZ = 0 , (12)

qR =
sin θair(ri)

n
, qZ = cos

{
sin−1

[
sin θair(ri)

n

]}
.

(13)
Thus, the parametric ray representation is

R(ri, α) =
d

f
ri + α

1
n

sin θair(ri) (14)

Z(ri, α) = α cos
{

sin−1

[
1
n

sin θair(ri)
]}

. (15)

The differential change in coordinates from (ri, α) to
(R, Z) is expressed by the Jacobian matrix

J =




(
∂pR
∂ri

+ α∂qR
∂ri

)
qR(

∂pZ
∂ri

+ α∂qZ
∂ri

)
qZ


 . (16)

The locus of the singularities in J represents a surface [5, 9],
to which all chief rays are tangent. This is the caustic [3]. In

the context of imaging, the caustic is regarded as the locus
of all the focal points, i.e., the viewpoints of the system.
For example, in a perspective system, the caustic is a single
point. To find the caustic surface, we find the points where
|J| = 0. Applying this condition on Eq. (16) yields

α =

(
qR

∂pZ

∂ri
− qZ

∂pR

∂ri

)
(
qZ

∂qR

∂ri
− qR

∂qZ

∂ri

) . (17)

Using Eq. (17) in Eqs. (10-13) yields the caustic coordinates

Rcaustic = dχ(ri) , Zcaustic = −dn [1 + χ(ri)]
1.5

, (18)

where
χ(ri) =

(
1− 1

n2

)
r2
i

f2
. (19)

Obviously, following Eq. (18), the caustic is not a point (un-
less d = 0). Therefore, the system does not have an SVP.

Fig. 5 depicts the caustic in a field of view (FOV) for
which max(θair) = 50◦. From Eq. (18), both Rcaustic and
Zcaustic depend linearly on d. Therefore, the dimensions
in Fig. 5 are normalized by d. An immediate conclusion is
that one should place the camera such that d is as small as
possible, in order to make a perspective model more valid.

Note that the extent of the caustic in Fig. 5 is larger than
d. For d = 2cm, for example, the viewpoint in the image
center is ∼ 2cm apart from the viewpoint at the image cor-
ners. Furthermore, when looking at an aquarium, d is in
the order of tens of centimeters, leading to a similarly large
spreading of the viewpoint locus. Suppose that one selects
a single point in the caustic to be a representative viewpoint

4
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Figure 5. Caustic of a system having a flat interface with water.
The camera has an FOV of max(θair) = 50◦. The caustic has
radial symmetry which is violated towards the boundaries of the
FOV due to the rectangular shape of the sensor. The extent of the
caustics is O(d), and can often reach centimeters or decimeters.

for an SVP model. The large spread of the caustic prevents
any such point to yield a good approximation. This large
spread is significant especially when imaging short ranges
inside the medium, as done in turbid environments. There-
fore, approximating the model by an SVP is clearly wrong.

When the entrance pupil is outside the lens (Sec. 3.3),
the caustic shape is flipped upside down. Thus in this case,
the entire wide set of viewpoints is in the medium.

5. When does the Perspective Model Apply?
Sometimes, cases described in Secs. 3.1 and 3.3 can

be practically assumed to have an SVP. This section dis-
cusses when this can be done. Consider two object points
(rw,1, zw,1) and (rw,2, zw,2) that lie on the same chief ray.
According to the correct model (Sec. 3.1 or Sec. 3.3) they
are imaged to the same point ri,1 = ri,2 . On the other
hand, use of an SVP model would yield projected image
points according to Eqs. (7-9). In this incorrect model, the
image points would be rpersp

i,1 6= rpersp
i,2 when zw,1 6= zw,2.

Therefore, the criterion

eSVP ≡ rpersp
i,1 − rpersp

i,2 (20)

can indicate the error caused by assuming an SVP model.
Fig. 6 presents eSVP as a function of the location in the

FOV. Here f = 20mm, zw,1 = 1m and zw,2 = 1.5m. A
pixel is 5µm wide. The value d = 2cm is typical to un-
derwater housings, while d = 20cm characterizes cases of
aquaria. In Fig. 6, eSVP is small only for very small angles
or for a very small d. In these cases, the perspective model
is valid. If θair and d are not very small, the SVP assump-
tion yields very large errors, that can reach tens of pixels.

6. Calibration
Calibrating a camera having a non-central viewpoint in-

volves calibrating a ray map, i.e., the trajectory of the light

pi
xe

ls

airθ
Figure 6. The error eSVP caused by an SVP model. It is based on
two objects imaged to the same pixel via a flat interface system.
The distances of the objects are zw,1 = 1m and zw,2 = 1.5m.

ray that each pixel captures. There are non-parametric
methods for calibration of such non-SVP systems [9, 28].
However, Ref. [28] mentions stability difficulties, while the
method in [9] may be complex to implement in a hostile
environment in the sea. Both methods in [9, 28] require
multiple frames. Fortunately, here the imaging model is pa-
rameterized thanks to its physics-based root. Thus calibra-
tion can focus simply on the unknown parameters.7 Fur-
thermore, the calibration can be based on a single frame.

Based on Sec. 3, we develop a parametric calibration
process for the flat interface medium system. The index
n is assumed to be known since according to [20], n varies
by less than 3% over the entire range relevant to hydrologic
optics, where n ≈ 4/3. Nevertheless, n can be a free pa-
rameter that is involved in the calibration process as in [21].
The camera itself, irrespective of the medium of interest,
has a center of projection. The image coordinates of this
center are represented by c = [cx, cy].

To obtain intuition, consider an object at (robj
w , zobj

w ),
which is imaged into the image coordinates (xobj

i , yobj
i ).

The radial image coordinate is

robj
i =

√
(xobj

i − cx)2 + (yobj
i − cy)2 . (21)

Suppose for the moment that the camera had been calibrated
in air, i.e., the inherent properties f and c of the perspective
camera were measured, as in [11, 12, 38]. Using Eq. (5),
the remaining unknown parameter is directly estimated:

d̂ = f
robj
w

robj
i

− zobj
w

[
n2 +

(
robj
i /f

)2

(n2 − 1)
]− 1

2

. (22)

Eq. (22), however, is impractical. It requires the ob-
ject’s off axis position rw to be known, which is difficult
to achieve. Moreover, Eq. (22) requires prior calibration in
air. This is inconvenient, especially if zoom or focus set-
tings are changed in-situ. We thus present here a simpler
way that works well in-situ, as we demonstrate in field ex-
periments.

7A physics-based parameter calibration was applied on non-SVP cata-
dioptric cameras [34] in air.
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Figure 7. A straight object is imaged for calibration purposes. The
object may appear bent in the raw frame. However, the world
coordinates estimated by the model are unaffected.

The proposed method only requires imaging of an object
of a known length sknown and distance zobj

w . Identifying the
object’s extremities, we index these points as m = 1, 2.
Their corresponding image coordinates are (ri,1, φ1) and
(ri,2, φ2), where φm denotes the azimuthal coordinate of a
point (Fig. 7). The object may appear bent in the frame due
to the distortions. In the world coordinates, it maintains its
straight form, though. Based on Eq. (5) the corresponding
world coordinates rw,1 and rw,2 should satisfy

r̂w,m =
d

f
ri,m +

zobj
w√

(fn/ri,m)2 + n2 − 1
. (23)

Based on the law of cosines, the object length should satisfy

ŝ =
√

(r̂w,1)2 + (r̂w,2)2 − 2r̂w,1r̂w,2 cos |φ1 − φ2| . (24)

Following Eqs. (21,23,24) the calibrated values d̂, f̂ , ĉ
are the ones that satisfy

ŝ(d̂, f̂ , ĉ) = sknown . (25)

Hence d̂, f̂ and ĉ are parameters8 of the image-formation
model that are set to fit the known data. This fitting is easily
generalized to work on a set of several measurements (e.g,
a least-squares fit). Recall that if d̂ < 0, then the entrance
pupil is in the medium.

Eqs. (21,23) assume that the camera in the air chamber
does not have inherent radial distortions. However, if it
does, then the parameters of these camera distortions can
be incorporated into the fitting model. Now,

rdistorted
i =

√
(xi − cx)2 + (yi − cy)2 , (26)

since (xi, yi) is a distorted projection. The distorted camera
projection is corrected (rectified) by a parametric model,9

e.g.,
ri = rdistorted

i + k(rdistorted
i )3 + . . . (27)

The value of ri resulting from Eqs. (26,27) is used in
Eq. (23). Thus, the parameter k becomes part of the fitting
degrees of freedom in Eq. (25).

8If f and c are known a-priori, (e.g., by prior calibration in air), then in
this case the sole fitting parameter is d̂.

9As in [37], here we do not need to refer to tangential distortion.

Rule of Thumb
Assume we calibrate the system using a perspective

model in the medium. Then, we get an estimated f̂ effective
medium ,

as described in Sec. 3.2. If f̂ effective
medium ≈ nf , as in Eq. (6),

then d ∼ 0. In this case, the errors induced by the SVP
model might be negligible. If |f̂ effective

medium − nf | > 0, then d
is significant and our model has to be applied. Specifically,
f̂ effective
medium < nf ⇔ d > 0 and the opposite for d < 0.

7. Experiments
7.1. Calibration

We used a Nikon D100 camera and a Nikkor 24−85mm
lens. They were housed in a Sealux underwater housing
having a flat port PN94. We worked underwater in the
ocean. The setup is shown in Fig. 8a. We used a checker-
board pattern as a calibration target (Fig. 8b). Each square
is 27.5mm × 27.5mm. The known sizes enabled us to
select, after image capture, a few lines of known length.
Then, we applied Eqs. (23-25) on them. We show results
of our method in two sessions. In each session we used
the lens in different zoom and focus settings. In session 1,
zobj
w = 48cm, and [d̂, f̂ ] = [7.9cm, 24.3mm]. In session
2, zobj

w = 78cm, and [d̂, f̂ ] = [4.2cm, 58mm]. We con-
ducted similar experiments in a swimming pool, in which
[d̂, f̂ ] = [7.4cm, 26mm]. Note that the value of d changes
significantly when changing the lens setting f .

7.2. Validation
The calibration result d̂ can now be applied for measur-

ing unknown objects that are placed in distances that are
generally different from the calibration distance. For vali-
dation we applied this measurement method on objects that
we later measured independently by a ruler. Fig. 8c shows
examples of such objects that we measured. On each im-
aged object we applied Eqs. (21,23,24), using the values
of d̂, f̂ and ĉ calibrated in Sec. 7.1. To show the general-
ization of the model, about half of the measured validation
objects are at a distance zobj

w that is different than the one
used during calibration. The estimated sizes of the valida-
tion objects are ŝ(d̂, f̂ , ĉ). Table 1 compares ŝ(d̂, f̂ , ĉ) to
the ground truth length sknown of each object.

7.3. Comparison to the Known Art
To demonstrate the significance of our approach, we

compare it to the current practice. The current art [8, 23,
25, 26, 32] of vision through a flat interface has relied on the
perspective model, regarding the refraction effects as a ra-
dial polynomial lens distortion. To emulate this, we used an
off-the-shelf camera calibration toolbox [4]. This toolbox
is based on [12]. It uses calibration images of a checker-
board pattern taken in different positions. We took such im-
ages underwater with our system. Then, the standard pro-
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Figure 8. Calibration and validation experiments done in the ocean while scuba diving. (a) The imaging setup. (b) The checkerboard chart
used for in-situ calibration. Specific line lengths are marked. (c) Underwater objects are used for validation of the calibration. They were
measured independently.

session object zobj
w sknown ŝ(d̂, f̂ , ĉ) ŝpersp

1

A 48 11.5 11.5 8.9
B 48 14.0 13.3 10.7
C 48 20.5 20.0 15.7
A 134 11.5 11.1 10.1
B 134 14.0 14.0 12.8
C 134 20.5 20.6 18.6
D 134 26.0 26.7 24.3
E 134 28.0 29.2 26.8

2

A 153 11.5 11.6 10.4
B 153 14.0 14.3 12.7
C 153 20.5 20.5 18.7
A 78 11.5 11.1 9.7
B 78 14.0 13.6 11.9
C 78 20.5 19.3 17.0

Table 1. Results of the validation experiments. Units are cm.

cess [12] obtained the camera parameters of the perspective
model, particularly f̂ effective

medium (the focal length in water) and
the presumed radial distortion parameters. We compensated
the images for these estimated radial distortions. Then, we
used f̂ effective

medium to find the objects’ world coordinates

rpersp
w = riz

obj
w /f̂ effective

medium . (28)

Using Eq. (28) in Eq. (24) yielded an estimate for the ob-
ject length ŝpersp, which appears in Table 1 for comparison.
Our physics-based model, ŝ(d̂, f̂ , ĉ) which accounts for the
non-SVP nature of the system is significantly more accu-
rate: ŝ(d̂, f̂ , ĉ) fluctuates by ≈ 1 − 2% around the correct
value. In contrast, the error in ŝpersp is ≈ 10% − 15%.
Moreover, ŝpersp is biased. Similar results were obtained in
the swimming pool.

8. Discussion
We suggested here a physics-based model for an imaging

system having a flat refractive interface. The paper reveals
that such a system does not have an SVP. The caustic extent
is O(d) and thus can be significant. This yields significant
3D distortions. For calibration of a flat-refractive interface

system, we presented a method that can be applied in-situ,
even if the lens settings are changed. It can be based on a
single frame. In real experiments our method yielded results
that are significantly more accurate than the SVP model.

These results have implications in the wide range of
fields that use flat interface systems (see Sec. 1). Some sys-
tem aspects may exist in microscopy. There, a liquid-based
biological specimen or tissue is typically covered by a flat
cover-glass, through which it is viewed. In other cases, the
specimen is in a flask or Petri dish, and is viewed under-
neath, via the flat transparent dish. Thus, unless the objec-
tive lens used has an orthographic projection as described in
Ref. [17], the system is prone to distortions as we describe.

When attempting underwater 3D stereo reconstruction
with a flat port, assuming an SVP model is likely to yield
significant errors. For stereo, there is need to use the ray-
map which is calibrated in this paper. Closed-form stereo in
this system requires additional theoretical work. Other pos-
sible extensions include self-calibration methods, to allevi-
ate the need for a known calibration object. In addition, we
plan to examine the sensitivity of the fitting problem (25) to
the imaging parameters and data. It is further worth model-
ing interfaces that are not perpendicular to the optical axis,
or even curved [18]. The physics-based geometric model
can be expanded into a radiometric falloff model, based on
Fresnel’s laws of refraction. Defocus analysis, as in [2] is
also beneficial.
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