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Abstract—Imaging in scattering media such as fog and water is important but challenging. Images suffer from poor visibility due to

backscattering and signal attenuation. Most prior methods for scene recovery use active illumination scanners (structured and gated),

which can be slow and cumbersome. On the other hand, natural illumination is inapplicable to dark environments. This paper

addresses the need for a nonscanning recovery method which uses active scene irradiance. We study the formation of images under

wide-field artificial illumination. Based on the formation model, this paper presents an approach for recovering the object signal. It also

yields rough information about the 3D scene structure. The approach can work with compact simple hardware, having active wide-field

polychromatic polarized illumination. The camera is fitted with a polarization analyzer. Two frames of the scene are instantly taken, with

different states of the analyzer or light-source polarizer. A recovery algorithm follows the acquisition. It allows both the backscatter and

the object reflection to be partially polarized. It thus unifies and generalizes prior polarization-based methods, which had assumed

exclusive polarization of either of these components. The approach is limited to an effective range due to image noise and falloff of

wide-field illumination. Thus, these limits and the noise sensitivity are analyzed. The approach particularly applies underwater. We

therefore use the approach to demonstrate recovery of object signals and significant visibility enhancement in underwater field

experiments.

Index Terms—Computer vision, modeling and recovery of physical attributes, scene analysis—color, physics-based vision, vision in

scattering media, inverse problems, polarization, image recovery.

Ç

1 INTRODUCTION

SCATTERING media exist in bad weather, liquids, biological
tissue, and even solids [3]. Images taken in scattering

media are characterized by loss of contrast. Light passing
through undergoes absorption and scattering, causing
changes in color and brightness. Moreover, light that is
scattered back from the medium along the light of sight
(backscatter) veils the object, degrading the contrast. There-
fore, applying traditional computer vision methods in such
environments is difficult. Nevertheless, there is a strong
need to perform vision tasks in these media. Examples
include vision through biological tissue [16], underwater
applications, such as port inspection, measuring ecological
systems [15], and navigation in bad weather [1].

Previous studies tackled this challenge in various ways.

Some recovered visibility as well as the 3D structure in haze

and underwater [38], [39], [40] under distant natural

illumination. However, application fields operating in

highly turbid media use artificial illumination sources at

short distances, be it underwater or in the human body.

However, artificial lighting usually causes a strong back-

scatter. Backscatter can be modulated and then compensated

for in image postprocessing. Prior modulation methods

require acquisition of long image sequences by structured

light [21], [23], [31] or time-gating [6], [9], [14], [47], [49].

Nayar et al. [32] required many frames as well, to achieve

quality results. Such sequences may lengthen the overall
acquisition time. Moreover, such systems may be complex
and expensive.

To counter these problems, we look at wide-field (not
scanning) illumination with a small (or no) baseline, where
the backscatter is modulated by polarization. Preliminary
studies [10], [11], [24] indicated that backscatter can be
reduced by polarization. However, we go further. By
postprocessing, we remove residual backscatter that is not
blocked by optical means. Moreover, a rough estimate of
the 3D scene structure may be obtained from the acquired
frames. The acquisition setup is a simple modification of
instruments used routinely in such media: simply mounting
two polarizers, one on the light source and another on the
camera. The acquisition process is instantaneous, i.e.,
requiring only two frames, rather than scanning. In this
paper, we describe and demonstrate each step separately.

Some prior methods used polarization in scattering
media. Some assumed a negligible degree of polarization
(DOP) of the objects [38], [39], [41], [50]. Others assumed the
contrary, i.e., the object reflection is significantly polarized
rather than the backscatter [52]. However, here we allow
both the backscatter and the object reflection to be partially
polarized. Thus, our analysis unifies and generalizes the
mentioned previous methods.

The approach is based on several insights into the image
formation process. We show that backscatter and attenua-
tion of artificial illumination can be well approximated by
simple closed-form parametric expressions. To incorporate
polarization, we made some empirical observations in real
underwater scenes: in a temperate latitude sea (the
Mediterranean), in a a tropical sea (the Red Sea), and in a
murky lake (Sea of Galilee). Our approach has limits
stemming from the wide-field nature of the illumination
and from the acquisition noise. In this paper, we thoroughly
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analyze the reconstruction limits of both signal and 3D

structure.
In Section 2, this paper first describes the scientific model

of the imaging system and sets the ground for polarization

imaging (Section 3). The reconstruction is done in two

steps: First, we recover the object signal (Section 4). Then,

we estimate the scene structure (Section 5). Experimental

results follow each step. In Section 6, we discuss estimation

of essential parameters. Then, Section 7 analyzes the limits

of our method due to image noise. Partial results appeared

in [50].

2 STATEMENT OF THE PROBLEM

Consider a perspective underwater camera (Fig. 1). Let X ¼
ðX;Y ; ZÞ be the world coordinates of a point in the water.

We set the world system’s axes ðX;Y Þ to be parallel to the

ðx; yÞ coordinates at the image plane, while Z aligns with

the camera’s optical axis, and the system’s origin is at the

camera’s center of projection. The projection of X on the

image plane is x ¼ ðx; yÞ. In particular, an object point at

Xobj corresponds to an image point xobj. The line of sight

(LOS) to the object is

LOS � X : Z 2 ½0; Zobj�; X ¼ ðZ=fÞxobj; Y ¼ ðZ=fÞyobj

� �
;

ð1Þ

where f is the camera’s focal length. The measured image is

IðxobjÞ ¼ SðxobjÞ þBðxobjÞ; ð2Þ

where SðxobjÞ is the object signal and BðxobjÞ is the

backscatter [17], [26], [28]. Before detailing these compo-

nents, note that backscatter is the major cause of contrast

deterioration [18] rather than signal blur. This was demon-

strated in [38] and [39], using objective criteria. Interest-

ingly, according to Wells [53], human vision associates

image quality mostly with contrast rather than resolution.

For these reasons, we do not focus here on image blur or

deblurring. Rather, we consider the prime effects associated

with turbidity to be backscatter and attenuation. Fig. 2

demonstrates these effects.
Define LobjðxobjÞ as the object radiance we would have

sensed had no disturbances been caused by the medium

along the LOS and under uniform illumination. Propaga-

tion of light to the object and then to the camera via the

medium yields an attenuated [17], [26] signal. The signal is
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Fig. 1. A camera inside a dome port with a radius r. The variables are detailed in the text.

Fig. 2. Simulation of an underwater scene. The scene was assigned a linearly varying distance map ranging between ½0:2 m; 1 m�. (a) A uniformly lit

clear scene. (b) The simulated attenuated signal. (c) The backscatter component. (d) The sensed underwater scene, accounting for both scattering

and attenuation.



SðxobjÞ ¼ LobjðxobjÞF ðxobjÞ; ð3Þ

where F is a falloff function described below.
A point X in the water is at total distance kXk from the

camera. If the camera is enclosed in a dome port1 as in [38],

[39], then the distance from the dome to X is

RcamðXÞ ¼ kXk � r; ð4Þ

where r is the dome’s radius. Consider for a moment a

single illumination point source. From this source, light

propagates a distance Rsource to Xobj. Free space propagation

creates a 1=R2
source irradiance falloff. Yet, there is turbidity,

characterized by an attenuation coefficient c. Hence,

F ðxobjÞ ¼
exp �c RsourceðXobjÞ þ kXobjk � r

� �� �
R2

sourceðXobjÞ
QðXobjÞ: ð5Þ

Here, QðXÞ expresses the nonuniformity of the scene

irradiance (Fig. 3), solely due to the angular inhomogeneity

of the illumination (anisotropy), which is insensitive to the

medium properties. Thus, in water-based media, for

example, it can be precalibrated in clear water. For multiple

illumination sources, or for a wide spread source, (5) is

derived for each point source, and then all F ’s are summed

up. This can be generalized to include illumination due to

multiple scattering [48].
In order to calculate the backscatter that appears in (2),

first define Isource as the irradiance of a point in the volume

[17] by a small illumination source of intensity Lsource:

IsourceðXÞ ¼ Lsource 1=R2
sourceðXÞ

� �
exp �cRsourceðXÞ½ �QðXÞ:

ð6Þ

Then, according to the single scattering model (Fig. 4), the

backscatter is given [17], [50] by integration along the LOS:

BðxobjÞ ¼
Z RcamðXobjÞ

Rcam¼0

b �ðXÞ½ �IsourceðXÞ exp �cRcamðXÞ½ �dRcam; X 2 LOS;

ð7Þ

where � 2 ½0; �� is the scattering angle, and b is the scattering

coefficient2 of the medium: It expresses the ability of an

infinitesimal medium volume to scatter flux to �. Equation (7)
applies to each illumination source: Accumulating the
results yields the total backscatter. Note that the integration
in (7) stops when it reaches the object in the LOS. Therefore,
the backscatter accumulates (increases) with the object
distance. If there is no object on the LOS, the integration
in (7) continues to an infinite distance. The value of B then
increases until it reaches a saturation value. We term the
distance in which B effectively saturates3 as the saturation

distance zsat.
Our goal in this research is twofold: First is to estimate

the backscatter component, in order to remove it from the
raw image and reveal the object signal. Second is to study
the potential use of the backscatter component for extract-
ing information about the distance map of the scene.
Section 3 describes how we achieve the first goal by
polarizing the light source.

3 POLARIZATION IMAGING

As mentioned earlier, we suggest modulating the light by
polarizing the light source and imaging through a camera-
mounted polarizer (analyzer) in two orthogonal polarization
states. The system setup is depicted in Figs. 1 and 5. By
mounting a polarizer (either linear or circular) on the light
source, we polarize the illumination. The polarized light
propagates to illuminate the scene and part of it is scattered
back by particles in the medium toward the camera. During
this propagation, some energy of the light becomes
unpolarized (a process termed depolarization). This process
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Fig. 3. An example of an anisotropic illumination pattern QðXÞ: Even in

the same radial distance from the lamphead, the lighting changes

laterally. Fig. 4. Backscatter caused by single scattering (solid line) and multiple

scattering (dashed).

Fig. 5. A single lamphead version of our system.

1. Dome ports often shield cameras from water [38], [39]. With a dome,
optical distortions are smaller than when using other shapes of windows,
provided that the center of projection of the lens is accurately aligned with
the center of the dome. Schechner and Karpel [38], [39] explain that when
the lens and the dome are aligned, the polarization measurement is more
accurate because chief light rays do not change their path when passing
through the port. Distortions caused by a flat port are analyzed and
calibrated in [51].

2. Note that bð�Þ and c depend on the wavelength. Thus, each available
wavelength band is analyzed independently.

3. As in every asymptotic function, the effective distance can be defined
in different ways. For example, it can be defined as the distance where B
reaches 99 percent of its maximum value.



is complex and depends on the distribution of particle types
and sizes [19], [25], [36]. Apparently, this process affects
each polarization type differently: Some studies suggest
that depolarization during propagation is weaker in circular
polarization [19], [25], [29], [36], while Jarry et al. [19] and
Sankaran et al. [36] suggest weaker depolarization of linear
polarization in dense tissues. An empirical study [44] has
looked at the rate of depolarization with distance in
seawater. A preliminary empirical study [11] done decades
ago has shown that if the illumination is circularly
polarized, then it flips handedness upon backscattering.
Thus, Gilbert and Pernicka [11] achieved significant
improvement in image contrast in an optical method,
where it used an analyzer having the same handedness as
the illumination polarizer.

That said, despite the scientific efforts that have been
invested by various researchers (see, for example, [33]), the
known art has not supplied a clear answer as to which
polarization type is preferable in the true environments we
worked in and how the depolarization rate can be determined
by the scattering and attenuation coefficients in those
environments. Therefore, we tested our method with either
linear or circular polarization in different locations. In the
case of linear polarization, we mount a linear polarizer on the
light source and a linear analyzer on the camera. Then, an
orthogonal image pair is taken by either rotating the polarizer
or the analyzer. Specifically, we chose to rotate the analyzer as
it was easier in our setup. When using circular polarization,
orthogonal states result from switching handedness rather
than rotating the polarizers. As a consequence, linear
polarization is easier to use. Moreover, wideband and wide-
field circular polarization is difficult to create. In any case, raw
polarized data still contains significant backscatter. There-
fore, there is a need for postprocessing, as described in
Section 4. The postprocessing we perform does not depend on
the polarization type used.

4 BACKSCATTER REMOVAL BY POLARIZATION

This section describes and demonstrates through experi-
ments visibility enhancement by active polarization ima-
ging. This is done by separating the signal and the
backscatter components. Later, in Section 5.1, we explain
how the estimated backscatter may be used for estimating
the 3D structure of the scene.

4.1 Model and Algorithm

Previous studies have used polarized illumination for back-
scatter removal. In [50], we assumed that objects backreflect
unpolarized light to the camera. On the other hand, studies
using polarization difference imaging (PDI) assume the
opposite—that the light reflected from the objects is polarized
and that the backscatter is almost unpolarized. Here, we give
a more general model. Fortunately, if the object yields
polarized specular reflection, it behaves similarly to the
backscatter: Out of the two frames, generally the one in which
the backscatter is brighter is also the one in which the object
backreflection is brighter.4

As described in Section 3, we take two images of the
same scene using two orthogonal polarization states of

the polarizer. Had the backscattered light completely
retained its polarization, it could have been optically
eliminated by the analyzer. We discovered that a
substantial DOP is maintained upon backscattering. We
exploit this phenomenon.5 Consequently, placing an analy-
zer in the orthogonal state to the backscatter’s polarization
state yields an image with minimum visible backscatter. We
denote this image as Imin. Imaging with the opposite
orthogonal state, denoted as Imax, maximizes the backscatter.

We expand (2) to the polarized components Bmax, Bmin,
Smax, and Smin. Thus, the raw images are

ImaxðxobjÞ ¼SmaxðxobjÞ þBmaxðxobjÞ;
IminðxobjÞ ¼SminðxobjÞ þBminðxobjÞ:

ð8Þ

The DOP of the signal pobj and the DOP of the backscatter
pscat are defined as

pobjðxobjÞ ¼
SmaxðxobjÞ � SminðxobjÞ
SmaxðxobjÞ þ SminðxobjÞ

;

pscatðxobjÞ ¼
BmaxðxobjÞ �BminðxobjÞ
BmaxðxobjÞ þBminðxobjÞ

:

ð9Þ

In the following, xobj is omitted for simplicity. We end up
with two equations for the two unknown fields S and B:

Imax þ Imin ¼ Bþ S; ð10Þ

Imax � Imin ¼ pscatBþ pobjS: ð11Þ

The last equation is derived from plugging (9) into (8). The
solution to this equation set is

Ŝ ¼ 1

pscat � pobj
Iminð1þ pscatÞ � Imaxð1� pscatÞ½ �; ð12Þ

B̂ ¼ 1

pscat � pobj
Imaxð1� pobjÞ � Iminð1þ pobjÞ
� �

: ð13Þ

This is a general result, enabling separation of B and S from
the two raw images, given the DOPs pobj and pscat.

A very important property of (12) is that pobj contributes
only a scale factor to the signal reconstruction Ŝ. Suppose that
pobj is approximately constant across the scene, but it is
unknown. Then, the signal estimation (12) is consistent with
the true S up to a scale. For purposes of visibility enhance-
ment, the scaled Ŝ is sufficient: The backscatter is removed
and missing parts are revealed. Furthermore, the back-
scatter is usually not uniform across the image; some
regions have high intensity backscatter and others have low
intensity backscatter (see Fig. 2). This hampers standard
image enhancement techniques. Therefore, removing the
backscatter results in a signal estimation Ŝ with a more
uniform intensity. Thus, further image improvement may
be obtained by applying standard image enhancement
techniques to Ŝ, rather than applying them to I or Imin.

As pobj changes only the scale of Ŝ, good results can be
achieved [38], [39], [41], [50] based on the assumption that
pobj ¼ 0. In this case, (12) and (13) reduce to

388 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 3, MARCH 2009

4. Empirically, we never encountered a reversed polarization of the
signal relative to the backscatter.

5. Polarization has also aided other computer vision aspects [2], [5], [7],
[8], [27], [40], [43], [45], [54].



Ŝ ¼ Iminð1þ pscatÞ � Imaxð1� pscatÞ½ �=pscat; ð14Þ

B̂ ¼ ðImax � IminÞ=pscat: ð15Þ

Note that, in this case,

Imin ¼ Bð1� pscatÞ þ S½ �=2; Imax ¼ Bð1þ pscatÞ þ S½ �=2: ð16Þ

Let us examine the consequence of using an assumption

pobj ¼ 0 in (13), when image creation (8) experienced

pobj 6¼ 0. This case yields a false estimation ~B of the

backscatter:

~B ¼ Imax � Imin

pscat
¼ B̂þ Smax � Smin

pscat
¼ B̂þ pobj

pscat
S: ð17Þ

The last equality results from plugging in the DOP pobj from

(9). As discussed in Section 2, B increases with the distance.

From (5), when the camera and the light sources are on the

same side of the object (a common scenario), S decreases

with the distance. In that case, a result of (17) is that ~B is no

longer monotonic with Zobj.
As opposed to the assumption pobj ¼ 0, methods based on

PDI [52] assume that pscat=pobj ! 0. Plugging pscat=pobj ! 0 to

(12) and (13) results in

Ŝ ¼ 1

pobj
½Imax � Imin�; ð18Þ

B̂ ¼ 1

pobj
Iminð1þ pobjÞ � Imaxð1� pobjÞ
� �

: ð19Þ

Note that, in this case, (18) is a scaled version of the

polarization difference image. Here, we see that (12) and

(13) unify both the dehazing methods [38], [39], [41], [50],

where pobj ¼ 0, and the PDI methods where pscat=pobj ! 0.
Using (12) and (13) without such approximations requires

the estimation of the DOPs. Section 6 describes how the DOPs

are estimated in the general case. First, however, we

demonstrate backscatter removal in experiments.

4.2 Experiments

The method described above is general and it does not

assume a specific medium. However, as discussed in

Section 3, depolarization depends on the medium [22].
Therefore, in order to demonstrate the effectiveness of the

method in real-world situations, we embarked on under-
water dives rather than using indoor tanks. Particles in
substances (like milk, lipids, etc.) used for diluting water in

indoor tanks are usually homogeneous and sometimes
symmetric [19], [35], while oceanic particles are hetero-
geneous [28]. Therefore, we were concerned that polariza-

tion experiments done with diluted substances would not
represent correctly the properties and the variety of the
media in the field, e.g., seawater. We have done experi-

ments while scuba diving at night in various environments,
in a pool, the Red Sea, the Mediterranean (Fig. 6), and the
Sea of Galilee.

4.3 Equipment

Fig. 5 shows that the system we used has two main parts:

. An SLR camera with an underwater housing. We use a
Nikon D100 camera, which has a linear response [38],
[39]. The camera is placed in a Sealux underwater
housing with a mounted polarizer. The considerations
for choosing a camera, an underwater housing, and
mounted polarizers are detailed in [38], [39].

. Underwater AquaVideo light sources, with 80 W
halogen bulbs. A polarizer is mounted on the
lighthead. We had special consideration behind the
selection of the lighting setup, as detailed in the
Appendix.

We used standard off-the-shelf polarizers of Schneider and

Tiffen. The camera was mounted on a tripod. To safely
transport this amount of equipment while diving, a 50-kg
lift bag was used (Fig. 6). The tripod was set to resist swell

by attaching weights on its lower part.

4.4 Real-World Results

Fig. 7 shows the results of applying (14) and (15) on images

taken during four different experiments we have performed.
We tested the method using different light source locations.
The left column presents the raw images I. The center

column shows Ŝ (where the estimated backscatter is
removed). The right column shows the estimated backscatter
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Fig. 6. (a) Scuba diving with a lift bag, toward night experiments in the Red Sea. (b) Preparations for an experiment in the Mediterranean.



component B̂. The experiments in the three top rows were

performed in the Mediterranean on three different occasions.

In all three cases, using linear polarizers have yielded a DOP

of pscat � 65%. In experiment 1, we used two light sources,

shining from above and below the camera. Here, Zobj < 3 m.

Notice the revealed rock in the upper left part, the sand in

the right side, the rocks on the bottom, and the distant part

of the tube. In experiment 2, Zobj 2 ½0:5 m; 6 m�. Here, we

used a single light source, coming from the top right. Notice

the revealed rectangular cube in the background. The

revealed objects in the background are dark, as at this

distance they receive only dim irradiance from the sources.

Experiment 3 shows a scene illuminated from the bottom

right. Consequently, the lower parts have a lot of backscatter

and, hence, poor visibility. Our method enhanced the

visibility in this part.
Experiment 4 shows a result of an experiment done in the

Sea of Galilee, a very murky lake. The light source is placed

above the camera. Here, Zobj � 0:5 m, which was the

maximum visibility distance. Here, circular polarization

yielded pscat � 9 percent while linear polarization yielded

pscat � 5 percent. Despite the difficult conditions, the method

revealed the imaged object, its rough contour, and its

colors. Notice that, in both experiments 2 and 4, the upper

part of the raw frame is very bright, due to backscatter. This

may cause the viewer to falsely assume that there is a bright
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Fig. 7. Results of four different experiments. (a) The raw images I. (b) The recovered signals Ŝ (backscatter removal). (c) The estimated backscatter

fields B̂.



object in that part of the scene. After removal of the
backscatter, these areas become dark as there is actually no
light reflecting from objects there. Then, we expect the scene
radiance to act according to (5). Indeed, in experiment 2, the
brightest part of Ŝ is the lower, close sand.

In our field experiments, both polarization types (linear
and circular) yielded good results. When visibility was
moderate (in the Mediterranean), linear polarization re-
tained pscat � 60-70%, higher than circular polarization, for
which pscat � 50%. In the murky Sea of Galilee, on the other
hand, circular DOP was higher than the linear one. There,
perceptual difference hardly existed between the raw
frames, due to the low DOP value. Nevertheless, our
method still enhanced Ŝ significantly.

5 RANGE AND FALLOFF

5.1 Range

Let us have an estimate for the backscatter B̂ in a scene, for
example, using the method in Section 4. We would like to
know if we may leverage B̂ to estimate the 3D structure of
the scene. A general approach is presented for estimating
Zobj based on B̂. It does not depend on the algorithm used
for extracting B̂ itself.

Similarly to [4], [30], [38], [39], [41], the backscatter B
increases with the distance Zobj; hence, it can indicate the
distance. Previously [38], [39], [41], this principle was
developed in the simple special case of distant illumination
sources (natural light), where the following relation holds:

B ¼B1 1� exp �cRcamðx; y; ZobjÞ
� �� �

�B1 1� exp �cZobjðx; yÞ
� �� �

:
ð20Þ

Such an estimation can be generalized to the use of
sources close to the camera. We found numerically [50] that
in wide-field lighting, (7) can be approximated as

BðxobjÞ � B1ðxobjÞ�
1� exp � �kðxobjÞ ZobjðxobjÞ � Z0ðxobjÞ

� �� �� �� �
;

ð21Þ

resembling (20). Fig. 8 presents an approximation done for a
particular setup. A major difference between (20) and (21) is
that in (21)B1 is space variant. Equation (21) introduces two
new space-variant parameters,Z0ðxobjÞand kðxobjÞ. The offset
Z0 is a distance, which indicates the first effective intersection
of the LOS with the light cone emitted by the lamphead. The

rate at which B increases with Zobj at Z0 is set by k. These
parameters ðB1; Z0; kÞ depend on the lighting geometry, the
nonuniformity (anisotropy) QðXobjÞ of the illumination
sources and on the medium parameters c and b (described
in Section 2). They do not depend on Zobj.

Equation (21) is easy to invert, deriving an estimate
ẐobjðxobjÞ as a function of B̂ðxobjÞ:

ẐobjðxobjÞ ¼ Z0ðxobjÞ � ln 1� B̂ðxobjÞ
B1ðxobjÞ

 !" #
1

kðxobjÞ
: ð22Þ

This, of course, requires calibration of the spatially varying
parameter fields B1, k, and Z0. An important parameter is
B1. It expresses the backscatter at xobj had there been no
object in the LOS. Therefore, the relation

BrelðxobjÞ ¼
B̂ðxobjÞ
B1ðxobjÞ

ð23Þ

indicates how much the backscatter has reached its
saturation value B1. Thus, Brel is monotonic with Zobj.
The parameters k and Z0 function as scaling factors in (22).
It is easy [50] to determine the field B1 by taking a
photograph in the medium, where the camera is pointing
“nowhere” (to infinity). By approximating k and Z0 to be
uniform and plugging in typical values for them in (22), a
rough distance map can be estimated.

We simulated similar setups to those we used in our
experiments. To simplify the analysis, let us assume that the
backscatter coefficient bð�Þ is uniform in the range of angles
we use. This assumption is supported by [22], which shows
that in oceanic water the function bð�Þ is insensitive to � at
backscatter angles ð� � �=2Þ. Fig. 9 shows a distance map
derived by applying (22) and (23) on an underwater scene.
For (22), we used the values Z0 ¼ 20 cm and k ¼ 0:6. Those
values were chosen based on a numerical analysis of setups
where the light source was in proximity to the camera. This
analysis showed that Z0 ranges between 10 and 30 cm and k
ranges between 3 and 6. The value of k changes between
different illumination camera setups. It also changes
spatially in the image, pixels closer to the light source
having a higher k.

5.2 Falloff

Section 5.1 described the estimation of ẐobjðxobjÞ. Based on
ẐobjðxobjÞ, we may now estimate the falloff, using (5). Here,
we need three additional parameters. First is the attenuation
coefficient c, which can be measured by a transmissiometer.
Second, we need QðXobjÞ. This can be precalibrated once
per light source. In addition, there is a need to know Rsource.
It is derived based on a priori knowledge about the system
baseline [48]: It is sufficient to know the camera-light-source
baseline Rsc and the angle between this source and the LOS,
� (see Fig. 1). Then,

Rsource ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

sc þR2
cam � 2RcamRsc cos �

q
: ð24Þ

The value of R̂cam is estimated by setting z ¼ Ẑobj in (4).
Then, (24) derives R̂source. The use of Ẑobj and R̂source in (5)
derives an estimate for the falloff F̂ ðxobjÞ. Compensating for
the falloff by inverting (3) yields
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Fig. 8. The backscatter given by (7) as approximated by (21), with

c ¼ 0:1 m�1.



L̂objectðxobjÞ ¼ ŜðxobjÞ=F̂ ðxobjÞ: ð25Þ

To illustrate this, Fig. 10 shows a simulation of the entire

recovery method. A simulated object was assigned a

nontrivial distance map and artificial noise was added with

standard deviation (STD) of �Imin
¼ �Imax

¼ 1 gray level (out

of 256 gray levels in the raw frames Imin, Imax). Fig. 10d

shows L̂objectðxobjÞ after both removal of the estimated

backscatter and falloff compensation. While the image is

enhanced relative to the simulated I, there is noise

amplification in the distant parts [20], [37].

6 ESTIMATION OF THE DOPS

In Section 4, we use the parameters pscat and pobj to

reconstruct S and B. Ways for estimating these parameters

are discussed now.

6.1 Extraction of pscat

Light depolarizes as it propagates [44]. Therefore, it is

reasonable to expect the measured pscat to be nonuniform.

The reason for this is that backscattered light from a large

Zobj contributes pscat that is smaller than light backscattered

from a small Zobj. In total, the measured pscat is influenced

by light that is backscattered from all distances (up to the

object), close and far, on the LOS. However, we found

empirically that the value of pscat is practically constant

across the field of view (FOV) in seawater.6 A possible

explanation to this phenomenon is demonstrated in Figs. 8

and 16: After a short distance, the backscatter is saturated.

Therefore, backscatter stemming from large distances (with

a low pscat) has almost no influence on the measurement.
As pscat is practically uniform, it is easy to measure. It can

be retrieved in several distinct ways. These include:
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Fig. 9. Estimation of a distance map. (a) The different components of (21) and (23) in an underwater experiment. The image Brel is scaled to yield an
estimation of the distance map. (b) Views from different elevations of the reconstructed 3D scene composed of the recovered signal and the
estimated distance map.

Fig. 10. Simulated backscatter removal, 3D recovery, and falloff compensation of a noisy object. (a) An object was assigned a distance map varying
linearly to 1 m with a sticking rectangle at a distance of 0.3 m. (b) The simulated underwater raw frame I, with added noise. (c) The estimated
distance map Ẑobj. (d) The recovered object radiance L̂obj. In (c) and (d), the noise is amplified in the distant parts.

6. We found it is constant up to � 24 degrees relative to the optical axis.



1. Measuring an area xvoid in the FOV in which there is
no signal. Since there is no object in xvoid,
then ImaxðxvoidÞ ¼ BmaxðxvoidÞ and IminðxvoidÞ ¼
BminðxvoidÞ: Thus,

p̂scatðxvoidÞ ¼
ImaxðxvoidÞ � IminðxvoidÞ
ImaxðxvoidÞ þ IminðxvoidÞ

: ð26Þ

Assuming that pscat is uniform across the scene, (26)

yields an estimation of pscat for the entire FOV.
2. Rigidly shifting the camera/illuminator system, to

point to a void region in the medium (where no
object is in sight), as in Section 5.1. Then, an image
pair Imax; Imin is acquired. In this case, every pixel
points to a void. Therefore, using this pair with (26)
yields a potentially spatially varying pscat. This
method enables a more flexible model.

Let us analyze the consequences of a mistake in the

estimation of pscat, i.e.,

p̂scat ¼  ptrue
scat ; ð27Þ

where ptrue
scat is the true backscatter DOP. Underestimation

and overestimation correspond to  < 1 and  > 1, respec-

tively. If pobj ¼ 0, then using (27) in (15) yields an erroneous

estimate:

~B ¼ Imax � Imin

 ptrue
scat

¼ 1

 
B: ð28Þ

Similarly, the signal is erroneously estimated as

~S ¼ I� 1

 
B ¼ Sþ 1� 1

 

	 

B: ð29Þ

The relative backscatter error

Erel
B ¼

~B�B

B

����
���� ¼ j1= � 1j ð30Þ

is constant over the FOV. On the other hand,

Erel
S ¼

~S� S

S

�����
����� ¼ j1= � 1jBðxobjÞ

SðxobjÞ
ð31Þ

depends on BðxobjÞ=SðxobjÞ. Generally, B=S increases with

Zobj; hence, ~S is more affected by this error. Fig. 11 depicts

1= � 1j j, which is the part that depends on  in Erel
B and

Erel
S . From Fig. 11, the relative error is typically smaller

when  > 1. Therefore, it is better to overestimate pscat

rather than underestimating it.

6.2 Estimating pobj

Section 4 shows that, for purposes of signal reconstruction,
it is possible to assume that pobj ¼ 0. However, from (13), if
this assumption is wrong, it damages the estimation of B̂.
As a consequence, it damages the estimation of the object
distances Zobj, based on B̂, as described in Section 5.1.
Failing to estimate pobj correctly damages the monotonic
relation between B̂ and Zobj expressed in (21). For
illustration, in a real scene that we present in the following,
pobj � 30% at the rocks. In Fig. 12a, B̂rel is estimated under
the wrong assumption that p̂obj ¼ 0. Here, B̂rel is rather
uniform, despite variations of Zobj. On the other hand, when
taking into consideration pobj � 30%, Fig. 12b reveals the
significant dependency of B̂rel on Zobj in this case.

Sometimes pobj can be sampled directly from the images.
Consider the marked circle in Fig. 13; in off-axis illumina-
tion, the objects at the far fringe of the irradiated spot are lit
but are effectively not veiled by backscatter (as in [31]).

In Fig. 14a, for example, this occurs in the upper left part
of the FOV. Term such an image location as xclear. In such
areas, Imax � Smax and Imin � Smin. Then, similarly to (26),

p̂obj ¼
ImaxðxclearÞ � IminðxclearÞ
ImaxðxclearÞ þ IminðxclearÞ

: ð32Þ

For example, in the scene presented in Fig. 14, the measured
values of p̂obj in the red, green, and blue channels are 0.22,
0.27, and 0.34, respectively.
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Fig. 11. Influence of a wrongly estimated pscat. The relative error is

typically smaller in overestimation of pscat than in underestimation. Fig. 12. An image of B̂rel in an underwater scene. (a) When assuming
pobj ¼ 0, areas in proximity to the camera (lower part of the image) are
falsely assigned a high value. (b) Using an estimated pobj reveals that
B̂rel is indeed low at close distances. Here, pobj is assumed to be
spatially uniform. Areas that do not comply with this assumption stand
out (blue ellipses).

Fig. 13. Off-axis illumination results in areas with low backscatter (the
circled part). This area can be sampled to estimate p̂obj.



6.2.1 Automatic Estimation

We discuss here an automatic approach for the estimation

of pobj. It is based on the observation that using a wrong

value for pobj increases the crosstalk between the estimated

backscatter B̂ and the signal component Ŝ. Let

p̂obj ¼ ptrue
obj þ "; ð33Þ

where " is the error in pobj. Using (33) in (12) and (13) yields

an erroneous estimate of B:

~B ¼ B� "

pscat � ptrue
obj

~S; ð34Þ

where ~S is the erroneous estimate of S. Note that (17) is a

special case of (34) in which ptrue
obj ¼ pobj and " ¼ �pobj. In

any case, (34) shows that there is crosstalk between ~B and ~S

that increases with ". For example, Fig. 14b shows B̂

calculated using the assumption that pobj ¼ 0 (15). Note that

the value of B̂ in the circled area is high. In fact, a rock from

I can be seen there. Fig. 14c shows B1 for this setup. The

value of the circled part in B̂ is almost as high as its value in

B1. This falsely indicates a far object.
To quantify the crosstalk, we may use mutual informa-

tion (MI). The MI is a quantity that measures mutual

statistical dependency of the two random variables ~B and ~S.

A high value indicates some statistical dependency between
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Fig. 14. (a) A raw image I of an underwater scene. (b) The estimated B̂ using the assumption that p̂obj ¼ 0. (c) B1 of that setup. (d) B̂ using an

estimation for p̂obj. (e) The MI of B̂ and Ŝ as a function of p̂obj. In each color channel, the minimum of the MI sets p̂optimal
obj . (f) Zoom into the marked part

of plot (e).

Fig. 15. Using (36) on the example in Fig. 9. The MI was calculated only on the part marked by the white rectangle in (a) to avoid the anomalous

objects on the left part of (a). The full plot is shown in (b). Zoom-in of the marked rectangle in (b) is shown in (c).



the variables. Define b as a gray level in the image ~B.
Similarly, define s as a gray level in the image ~S. Then,

MIð ~B; ~SÞ ¼
X
b2 ~B

X
s2~S

probðb; sÞ log
probðb; sÞ

probðbÞprobðsÞ

� 

; ð35Þ

where probðb; sÞ is the joint probability distribution function
of pixels in ~B and ~S. The marginal distribution functions of
~B and ~S are defined as probðbÞ and probðsÞ, respectively.
The true distribution functions are unknown and, therefore,
they are estimated using histograms or, more efficiently, by
Parzen windows [46]. Thus, we estimate an optimal value
for p̂obj as

p̂optimal
obj ¼ arg min

p̂obj2½0;1�
MI ~Bðp̂objÞ; ~Sðp̂objÞ
� �� �

: ð36Þ

In the experiment shown in Fig. 14, the MI for different
potential values of p̂obj is plotted in Figs. 14e and 14f. In each
color channel, there is one value of p̂obj that minimizes the
MI. Note that these values are very close to the values
acquired by sampling (32). These values were used in (13)
to calculate B̂ in Fig. 14d. It shows B̂ based on (13), using
the value poptimal

obj derived by (36). Now, the circled part has a
low value of B̂, as expected from a close object. Another
example for the automatic estimation is shown in Fig. 15.

The problem becomes more complicated when pobj varies
across the scene. In Fig. 12, we can see (in blue ellipses) two
objects whose pobj is significantly different than the rest of
the objects. It causes distortions in the backscatter image. In
this case, we assigned for these objects the value of B̂rel of
their surrounding in order to get an estimation of the
distance map, which is shown in Fig. 9.

7 EFFECTIVENESS UNDER NOISE

Sections 4, 5, and 6 described methods to recover the object
visibility and distance. An important question to ask is how
distant can objects be and still be recovered? Even in a
nonscattering medium, wide-field illumination is limited by
the free-space falloff term 1=R2

source. This poses an inherent
limit on all approaches that use wide-field illumination.
Objects at long distances which are not lit effectively cannot
be reconstructed. Moreover, no imaging system is free of
noise. As a consequence, when the signal is in the order of

the noise, reconstruction is limited. For example, in our

system, the recorded intensity of objects farther than 6-7 m

was too low to be recovered by removing the backscatter

component.
As for distance recovery, a major concern is the

resolution of the function B̂ðZobjÞ. The function in (21) is

approximately linear at short distances, yielding a good

distance resolution. However, (21) saturates very quickly,

thus losing the capacity of proper recovery. Again, when

the resolution is in the magnitude of the noise, the

reconstruction may become fruitless. What are the typical

saturation distances? Fig. 16 depicts Brel as a function of the

object distance. It is a result of simulations based on three

classes of values for b and c, taken from [28], which are

typical of seawater at different environments. The simu-

lated light source was placed 15 cm from the optical axis of

the camera. Recall (Section 2) that the saturation distance

zsat is the distance in which B effectively becomes

indistinguishable from B1. We can see that zsat does not

vary much with the water properties. In either case, beyond

� 1:5 m the backscatter is already saturated and is thus

uninformative with respect to Zobj. Therefore, accurate

distance reconstruction based on backscatter is limited to

the close distances. Moreover, in all of the simulated water

types, Zsat � c�1. Sections 7.1 and 7.2 analyze the limits as a

function of various medium and imaging parameters.

7.1 Ŝ and B̂

Suppose we have two statistically independent intensity

measurements, Imax and Imin, with noise variances �2
Imax

and

�2
Imin

, respectively. Let variable v be a function of Imax and

Imin. Then, in a first order approximation, the noise variance

of v is given by

�2
v ¼

@v

@Imin

	 
2

�2
Imin
þ @v

@Imax

	 
2

�2
Imax

: ð37Þ

According to (12) and (13), the variables Ŝ and B̂ linearly

depend on Imin and Imax. Therefore, with respect to these

variables, (37) is an exact expression. Following (12) and

(13), the noise variances in Ŝ and B̂ are

�2
Ŝ
¼ 1þ pscat

pobj � pscat

	 
2

�2
Imin
þ 1� pscat

pobj � pscat

	 
2

�2
Imax

; ð38Þ
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Fig. 16. The relative backscatter Brel as a function of the object distance.

The values for b and c are taken from [28]. The backscatter saturates

within a range of 1.5 m. Moreover, the saturation distance Zsat is similar

in all three different water types.

Fig. 17. The noise STDs �B̂ and �Ŝ as a function of �0, pobj, and pscat.

The diagonal pobj ¼ pscat is unstable and, therefore, it is cut from the

illustration.



�2
B̂
¼ 1þ pobj

pobj � pscat

	 
2

�2
Imin
þ 1� pobj

pobj � pscat

	 
2

�2
Imax

: ð39Þ

It is obvious that if pobj � pscat, then f�Ŝ; �B̂g ! 1; hence,

the reconstruction is unstable. Thus, the method works best

if the medium and object differ significantly in their DOPs.

Specifically, in a medium where pscat is relatively high

(usually in good visibility), the method works best with

depolarizing objects. On the other hand, in a strongly

depolarizing medium (low pscat), objects are reconstructed

better if they are polarizing. Note that, in (38) and (39), the

noise component due to Imin is amplified more than that of

Imax. For example, consider �2
Ŝ

. If pscat ¼ 0:5, then �2
Imin

is

amplified nine times more than �2
Imax

.
Let us look for a moment on a case where signal-

independent noise dominates. Then, �Imax
¼ �Imin

¼ �0 and

�2
Ŝ
¼ 2�2

0

1þ p2
scat

ðpobj � pscatÞ2

" #
; �2

B̂
¼ 2�2

0

1þ p2
obj

ðpobj � pscatÞ2

" #
: ð40Þ

Fig. 17 depicts �Ŝ=�0 and �B̂=�0 as derived in (40). The cases

½pscat; pobj� ¼ ½0; 1� and ½pscat; pobj� ¼ ½1; 0� are two local mini-

ma. In other words, it is preferable that polarization of

either the backscatter or the backreflection would be high

and exclusive. In any case, f�B̂; �Ŝg > 1, i.e., the noise is

amplified.
In reality, �Imax

6¼ �Imin
due to photon noise. Define gelectr as

the number of photogenerated electrons required to change a

unit gray level. Following [34], [42], the noise variance of a

pixel gray level in an image I can be modeled as

�2
I ¼ �2=g2

electr þDt=g2
electr þ

IðxobjÞ
gelectr

; ð41Þ

where � is the STD of the electronic readout noise, induced

by electronic circuitry in the camera system. It is measured

as a number e� of electrons. Here, t is the exposure time,

while D is the detector dark current in units of e�=s. In (41),

the first two terms are signal independent. The third term is

photon noise, which is signal dependent. As in [42], the

signal-independent components are encompassed into a

single term:

�2
gray ¼ �2=g2

electr þDt=g2
electr; ð42Þ

assuming the same exposure time for all frames. Plugging

(41) and (42) into (38) and (39) yields

�2
Ŝ
ðxobjÞ ¼

1þ pscat

pobj � pscat

	 
2

�2
gray þ

IminðxobjÞ
gelectr

� 


þ 1� pscat

pobj � pscat

	 
2

�2
gray þ

ImaxðxobjÞ
gelectr

� 

;

ð43Þ

�2
B̂
ðxobjÞ ¼

1þ pobj

pobj � pscat

	 
2

�2
gray þ

IminðxobjÞ
gelectr

� 


þ 1� pobj

pobj � pscat

	 
2

�2
gray þ

ImaxðxobjÞ
gelectr

� 

:

ð44Þ

Let us look at the case where pobj ¼ 0. From (16), (43)

then becomes

�2
Ŝ
ðxobjÞ ¼

1

p2
scat

�

2�2
gray þ

SðxobjÞ
gelectr

� 

1þ p2

scat

� �
þBðxobjÞ

gelectr
1� p2

scat

� �� �
:

ð45Þ

Interestingly,�2
Ŝ

increases with the backscatter component B.
Therefore, it is beneficial to reduce B during acquisition.
We can further use (5), (21), and (45) to approximate7 the
dependency of �Ŝ on Zobj:

�2
Ŝ
ðxobjÞ ¼

1

p2
scat

�(
B1 1� exp �kðZobj � Z0Þ

� �� �
gelectr

1� p2
scat

� �
þ

2�2
gray þ

LobjðxobjÞ exp½�2cZobj�
gelectrZ

2
obj

" #
1þ p2

scat

� �)
:

ð46Þ

We define the effective reconstruction distance ZSeff as the
distance for which

�Ŝ ZS
eff

� �
Ŝ ZS

eff

� � � 1: ð47Þ

This is the distance beyond which the noise STD in Ŝ is
greater than Ŝ itself. Note that, when the signal-dependent
component is negligible compared to �2

gray, then (46)
degenerates to (40) by substituting �0 ¼ �gray and pobj ¼ 0.

To gain insight into the dependency of �Ŝ on Zobj, we
numerically assess two cases. The first takes into considera-
tion only the signal-independent noise �gray. The second case
accounts for all noise effects [the model of (41)]. LetB1 ¼ 250,
i.e., close to saturation in an 8-bit camera. Assume a
moderate8 value for the DOP, pscat ¼ 0:6 and attenuation
coefficient c ¼ 0:2 m�1. Furthermore, we set Z0 ¼ 0:2 m,
which is a typical value derived in simulations of setups
where the light source is in proximity to the camera. For
acquisition noise, we use typical values from [42]: �gray ¼ 0:4,
gelectr ¼ 50. Based on these values, we assess (46) with these
values. The results are shown in Fig. 18. Clearly, when taking
into consideration photon noise, ZSeff shortens. We note that
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Fig. 18. STD of the reconstruction noise of Ŝ as a function of Zobj. The

effective distance ZSeff is defined as the distance beyond which the noise

STD in Ŝ is greater than Ŝ itself. In this case, it is in the order of a meter.

7. For the falloff calculation in (46), we assumed the simple case of
collinearity of the camera and the light source axis. Equation (46) also
assumes a uniform light source.

8. This DOP value was chosen following our experiments, as described
in Section 4.2.



we repeated this analysis for different setups of camera/light
source and types of water. Changing the setup hardly
changes ZSeff . However, increasing the visibility (decreasing
c) increasesZSeff a little. In any case,ZS

eff is in the order of a few
meters. Apparently, this result does not fit our experiments,
where we reconstructed objects up to 5-6 m. However, our
simulation suggests that whereas the objects’ visibility is
enhanced by the reconstructions, the quantitative radiance
values may be inaccurate.

7.2 Noise in Ẑobj

In Section 5.1, the distance map Ẑobj is estimated based on
B̂. Here, we analyze the effectiveness of the estimation. The
noise in the estimated B̂ is uncorrelated with the noise in
B1, as both are based on different measurements. There-
fore, in analogy to (37), the noise variance in the estimated
distance is

�2
Ẑobj
¼ @Ẑobj

@B̂

 !2

�2
B̂
þ @Ẑobj

@B1

 !2

�2
B1
; ð48Þ

in first-order approximation. The value of B1 does not
change between frames. Thus, it can be calibrated accu-
rately once, setting �2

B1
’ 0. From (22),

@Ẑobj

@B̂
¼ 1

kð1�BrelÞ

� 

1

B1
: ð49Þ

Hence,

�2
Ẑobj
¼ 1

kð1�BrelÞB1

� 
2

�2
B̂
¼

exp 2kðZobj � Z0Þ
� �

k2B2
0

�2
B̂
; ð50Þ

where �2
B̂

is given by (44). As expected, �Ẑobj
!1, i.e., the

noise is greatly amplified as Brel ! 1, i.e., when Zobj 	 Z0,
destabilizing the reconstruction. However, this exponential
amplification breaks the first-order approximation in (37)
and (48). Thus, (50) is valid only at small values of Zobj.
Beyond that range, the effect of noise cannot be based on
(48), and it is thus assessed numerically. When Zobj

increases, some noisy pixels yield B̂ � B1, contradicting
the physical model. Then, B̂rel � 1 and the argument of the

logarithm in (22) is either 0 or negative. This yields values of
Ẑobj that are not physical (complex values). Having even a
single pixel of such nature invalidates the variance
calculation and, therefore, �Ẑobj

is undefined in that range.
To assess the effect of noise with respect to ground truth

data, we performed numerical simulations. We simulated
the acquisition process described in Section 4 using the
model from Section 2. Noise was added to the simulated
images to obtain Imin and Imax. Then, the distance Ẑobj

(which is now noisy) is reconstructed from Imin and Imax

using (13) and (22). We used the same parameters as in
Section 7.1, Imax; Imin 2 ½0; 255� and pobj ¼ 0. Fig. 19a plots
�Ẑobj

=Zobj in the range Zobj ¼ ½0; 1� m. The solid line shows
the empirical noise variance obtained in the numerical
simulation. At small values of Zobj, it is consistent with the
first-order theoretical approximation (50), which is plotted
as a dashed curve. When Zobj increases, the actual noise
grows beyond the first-order calculation.

As written above, at large distances the empirical �Ẑobj
is

undefined. Thus, in large distances, we assess the effect of
noise using other measures. Let us define �z as the set of all
physically valid pixels located in the same distance z:

�z ¼ x : B̂relðxÞ < 1; ZobjðxÞ ¼ z
� �

: ð51Þ

The average estimated distance in the set �z is

�ZobjðzÞ ¼
1

j�zj
X
x2�z

ẐobjðxÞ: ð52Þ

The average �ZobjðzÞ is regarded as the expected distance
reconstruction for pixels corresponding to distance Zobj ¼ z.
We estimated �ZobjðzÞ in the simulation whose parameters
are described above. For this case, Fig. 19b plots �ZobjðzÞ as a
function of Zobj. The distance estimation is in agreement
with the ground truth up to a distance of 
 1 m. At some
point, �Zobj effectively does not change with Zobj. We term
the distance where it happens Z

Zobj

eff , beyond which the
distance estimation becomes meaningless. This short range
can be observed in Fig. 9. The bucket in the middle of the
scene is placed in Zobj � 2 m. As expected, the value of Brel

at the bucket is saturated, and thus, the bucket appears as
having the same distance as the background. Fig. 19c plots
1� j�zj=Nz, where Nz is the total number of pixels (both
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Fig. 19. (a) The value of �Ẑobj
=Zobj in the range Zobj ¼ ½0; 1�: theoretical first order (dashed) and empirical (solid). (b) The expected distance

reconstruction �ZobjðzÞ (solid) based on valid pixels, in comparison to the utopian output Zobj (dashed). (c) Percentage of the invalid pixels ð1�
j�zj=NzÞ as a function of Zobj. In these pixels, B̂rel � 1.



valid and invalid) corresponding to the true distance z. This

is the percentage of the physically invalid pixels, i.e., where

B̂rel � 1. Above Zobj � 1 m, this percentage increases ra-

pidly, which is in agreement with the loss of accuracy

shown in Fig. 19b.

8 SUMMARY

We have presented a polarization-based method for
visibility enhancement and distance estimation in scattering
media. The method was demonstrated in real-life experi-
ments. Our method uses two frames taken with wide-field
polarized illumination. Therefore, it is fast and simple. We
use wideband light sources, enabling colorful results. The
visibility enhancement range depends on the range of the
light source. However, underwater, the distance reconstruc-
tion is effective only in a range of 1-2 m. In the future, it
would be beneficial to expand the work to deal with objects
whose reflectance has spatially varying pobj. While we
performed experiments in the underwater domain, the
formulation of most of our problems is general and may
thus be applicable to other media. This work can be
incorporated together with other methods for vision in
scattering media [12].

The analysis in this paper used the single scattering
approximation. In principle, multiple scattering may occur.
At least in one of our experiments (Sea of Galilee, Fig. 7a),
multiple scattering was significant, creating noticeable blur.
Our method still resulted in visibility enhancement. Never-
theless, it will be beneficial to analyze the effects caused by
multiple scattering on the methods we presented in this
paper.

APPENDIX

At the current stage of the research, we wanted to reduce
the effects that can potentially disturb the experimental
demonstration. Hence, we had several consideration for
choosing the light sources, beyond being watertight in the
underwater depth:

. Stability. We had to avoid uncontrolled illumination
fluctuations in this research phase. Hence, we
avoided current arc-based flash bulbs, which have
Oð5%Þ fluctuations [13]. DC incandescent sources
are least prone to short-term fluctuations, once their
temperature saturates.

. Narrow lamphead exit aperture enables fitting of
high quality filters. Hence, we avoided current large
LED clusters or fluorescent bulbs.

. Holographic diffusers are used for higher transmis-
sion efficiency and smaller diffusing angles than
ground glass diffusers.

. Sealed diffuser. High efficiency diffusers are either
ground/sandblasted glass or holographic. The for-
mer become clear (nondiffusing) in water as their
refractive index is nearly matched by water in their
concavities. The latter are destroyed in water. Thus,
we sealed the diffusers in air-spaced windows.

. Diffuser before polarizer. Diffusers scramble light,
causing depolarization. Laboratory tests verified a
higher illumination DOP when the diffuser is placed

between the polarizer and the lamphead rather than
facing the object.

. High intensity extends the vision range in the water.

. Enough battery power to last for long underwater
experiments with fast recharging in field use.

We used the Aquavideo SuperNova system. It projects up
to 400 W by two incandescent bulbs. A lower power of 80 W
lasts for about an hour. It has a 50 mm lamphead exit. The
above considerations stemmed from research needs. In a
system for routine use, part of these considerations may be
relaxed.
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