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Abstract

Outdoor images taken in bad weather conditions, such
as haze and fog, look faded and have reduced contrast. Re-
cently there has been great success in single image dehaz-
ing, i.e., improving the visibility and restoring the colors
from a single image. A crucial step in these methods is the
calculation of the air-light color, the color of an area of
the image with no objects in line-of-sight. We propose a
new method for calculating the air-light. The method relies
on the haze-lines prior that was recently introduced. This
prior is based on the observation that the pixel values of
a hazy image can be modeled as lines in RGB space that
intersect at the air-light. We use Hough transform in RGB
space to vote for the location of the air-light. We evaluate
the proposed method on an existing dataset of real world
images, as well as some synthetic and other real images.
Our method performs on-par with current state-of-the-art
techniques and is more computationally efficient.

1. Introduction
Haze and fog have a negative effect on image quality in

terms of contrast and color fidelity. Pixel values in hazy im-
ages can be modeled as a linear combination of the actual
scene radiance and a global air-light. The amount of degra-
dation depends on the distance of the scene point from the
camera, and may vary from pixel to pixel. The air-light, on
the other hand, is assumed to be global.

Compensating for this degradation, termed dehazing, is
inherently under-constrained, and the various image dehaz-
ing algorithms proposed in the literature differ in the type
of prior they use. Some solve for the air-light independently
and some assume that the air-light is given as input.

Air-light estimation has not been studied as extensively
as priors for dehazing, and, with few exceptions, it is often
estimated in an ad-hoc manner. We propose a new algo-
rithm for air-light estimation that relies directly on a new
prior, termed haze-lines, that was recently introduced [2].

The haze-lines prior is based on an observation made for
clear images: the number of distinct colors in clear images

is orders of magnitude smaller than the number of pixels.
Therefore, pixels in a clear image tend to form a few hun-
dred clusters in RGB space. In hazy images, haze changes
the color appearance as a function of object distance. As
a result, these clusters become lines in RGB space (termed
haze-lines), since each cluster contains pixels from different
locations in the scene.

We rely on this prior to estimate the air-light. We treat
the pixels of a hazy image as points in RGB space and
model their distribution as a set of lines (i.e., the haze-lines)
that intersect in a single point (i.e., the air-light).

We use Hough transform to vote on the location of the
air-light. In its naı̈ve form, the algorithm is computationally
expensive, since there are many air-light candidate locations
in 3D RGB space, and for each location we must collect the
votes of all pixels in the image.

We propose a couple of approximations to address these
issues. First, we reduce the problem from 3D to 2D by con-
sidering the projection of pixel values on the RG, GB and
RB planes. We combine the votes in the three planes to ob-
tain the final air-light estimation. This has a dramatic effect
on the number of air-light candidates we need to sample
and evaluate. Second, we cluster all pixels in the image into
roughly a thousand clusters. Therefore, we only need to col-
lect votes for a candidate air-light from cluster centers and
weigh each vote by the cluster size, rather than collecting
votes from all pixels. As a result, our algorithm runs in a
matter of seconds, as opposed to minutes in the naı̈ve im-
plementation1. We demonstrate our method on a recently
proposed data set [1], as well as on other real-world im-
ages and synthetic data. Our method is more efficient than
state-of-the-art methods (linear vs. quadratic complexity)
and performs on-par with them.

2. Related Work
This section concentrates on air-light estimation and

provides a chronological survey of methods for estimating
a single, global, air-light from a single day-light hazy im-
age. Dehazing techniques recently received great attention

1Code is available: https://github.com/danaberman/

non-local-dehazing
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in the literature, and readers can find a comprehensive sur-
vey of dehazing algorithms by Li et al. [10].

In early works the most haze-opaque pixel was used to
estimate the air-light. For example, Tan [16] chose the
brightest pixel. Fattal [5] used it as an initial guess for an
optimization problem. However, the pixel with the highest
intensity might correspond to a bright object rather than to
the air-light.

Therefore, He et al. [7] suggest to select the brightest
pixel among the pixels that have the top brightest values of
the dark channel (the minimal color channel in a small envi-
ronment). This method is efficient and generally produces
accurate results, but it assumes that the sky or another area
with no objects in line-of-sight is visible in the image.

Tarel and Hautière [17] first perform white-balance and
then the air-light is assumed to be pure white ([1, 1, 1]).

Sulami et al. [15] separately estimate the air-light mag-
nitude and direction. The direction is estimated by look-
ing for small patches with a constant transmission and sur-
face albedo. Each pair of such patches provide a candidate
air-light direction as the intersection of two planes in RGB
space. The air-light magnitude is recovered by minimizing
the dependence between the pixels’ brightness and trans-
mission. Fattal [6] uses this air-light estimation [15] for
single image dehazing.

The patch recurrence property is an observation that
small image patches tend to repeat inside a single natu-
ral image, both within the same scale and across different
scales. This property is diminished when imaging in a scat-
tering media, since recurring patches at different distances
undergo different amounts of haze and have different ap-
pearances. Bahat and Irani [1] use this prior to detect differ-
ences between such co-occurring patches and calculate the
air-light. Both of the methods [1, 6] require finding pairs of
patches that satisfy certain conditions. These processes are
computationally intensive.

Figure 1. Haze-Line. The pixels of the Forest image were clus-
tered to haze-lines. Six of the pixels belonging to a single haze-
line are marked both in the image plane and in RGB space, with
respective colors. They are all located on shaded parts of the trunks
and branches, and therefore should have similar radiance. Due to
haze they are distributed along a line in RGB space, that is spanned
by the air-light A, marked in black, and a nearly haze-free pixel,
marked in yellow.

Unlike previous methods, which first estimate the global
air-light and use it to estimate the transmission for each
pixel, the scheme suggested in [4] first estimates the trans-
mission by DehazeNet, a convolutional neural network, and
then the air-light is selected as the brightest pixel whose
transmission value is smaller than 0.1. Similarly to [16, 7],
it requires a visible area with no objects in line-of-sight.

Alternative scenarios in which the air-light must be
estimated include estimation of a single, global air-light
from multiple images [14] or recovery of the air-light of
a night-time hazy image in the presence of multiple light
sources [9].

3. Air-light Estimation Using Haze-Lines
3.1. The Haze-Lines Prior

Hazy images can be modeled as a convex combination
of an attenuated signal and the air-light [11]:

I(x) = t(x)J(x) + (1� t(x)) ·A , (1)
where x is the pixel coordinate in the image plane, I is the
acquired image, J is the scene’s unknown radiance, t is the
transmission which is related to the distance of the object
from the camera, and A is the air-light, which we would
like to estimate. Bold letters denote vectors, where x is a
2D vector in the image plane and I,J , and A have three
color components (R,G,B).

The color distribution of natural images is sparse, thus
clear images can be represented by tight clusters in RGB
space. This observation lies at the heart of various image
processing applications such as denoising [3] and compres-
sion [12]. Since objects with similar colors are often located
at different distances from the camera, in the presence of
haze these objects will have different transmission values.
It follows from the model (Eq. 1) that hazy images can be
modeled by lines in RGB space that converge at the air-light
coordinate. This assumption is the basis for the non-local
single image dehazing [2], where these lines were termed
Haze-Lines. Formally, Eq.1 can be re-written as:

I(x) = t(x) · (J(x)�A) +A . (2)
A haze-line consists of pixels with a similar radiance J(x)

but different transmission t(x). Eq. 2 is a line equation
in 3D passing through the air-light coordinate A, where
(J(x)�A) is the direction, and t is the line parameter.
Fig. 1 demonstrates a Haze-Line both in the image plane
and in RGB space. To find the haze-lines, the 3D RGB co-
ordinate system is translated so that the air-light is at the
origin:

IA(x) = I(x)�A . (3)
The vector IA(x) can be expressed in a spherical coordi-
nate system:

IA(x) = [r(x), ✓(x),�(x)] , (4)



where r is the distance to the origin (i.e., kI � Ak), and
✓ and � are the longitude and latitude angles, respectively.
Haze-Lines consist of points with the same ✓ and � angles.

3.2. Air-Light Estimation
In [2] the Haze-Lines model is used by assuming a fixed

distribution of 3D lines emanating from the air-light 3D co-
ordinate in RGB space. Given the air-light as input, it is
possible to dehaze the image.

In this work, we use the same model in the opposite
direction. Given a candidate air-light coordinate in RGB
space, we model pixels’ intensities with a fixed set of lines
emanating from the air-light candidate. That is, we wish to
model pixels’ values by an intersection point (i.e., the air-
light) and a collection of lines (i.e., the Haze-Lines). An
air-light in the correct RGB location will fit the data better
than an air-light in a wrong location.

We use a Hough transform to estimate the air-light.
Hough transform is a useful technique to detect unknown
parameters of a model given noisy data via a voting scheme.
In this case, the voting procedure is carried out in a param-
eter space consisting of candidate air-light values in RGB
space. In particular, we uniformly sample a fixed set of line
angles {✓k,�k}Kk=1. Given this set, we consider a discrete
set of possible air-light values. The distance between a pixel
I(x) and the line defined by the air-light A and a pair of an-
gles (✓,�) is:

d (I(x) , (A,�, ✓)) = k(A� I(x))⇥ (cos (✓) , sin (�))k .
(5)

A pixel votes for a candidate A only if the distance to
one of the lines is smaller than a threshold ⌧ . This thresh-
old is adaptive and depends on the distance between A and
I(x) to allow for small intensity variations. I.e., instead
of working with cylinders (lines with a fixed threshold) we
work with cones (lines with a variable threshold). Formally:

⌧ = ⌧0 ·
✓
1 +

kI(x)�Akp
3

◆
. (6)

In addition, we allow a pixel to vote only for an air-light
that is brighter than itself. This is due to the fact that bright
objects are quite rare, as shown empirically to justify the
dark channel prior [7], and usually do not contain infor-
mation about the haze (e.g., a bright building close to the
camera).

Our method can be described as finding the best repre-
sentation of the pixels’ values of a hazy image with air-light
A and fixed line directions {✓k,�k}Kk=1. This can be for-
mulated as follows:

argmax

A

X

x

X

k

[d (I (x) , (A,�k, ✓k))<⌧ ] · [A>I(x)],

(7)

Algorithm 1 Air-light Estimation
Input: hazy image I(x)

Output: Â

1: Cluster the pixels’ colors and generate an indexed im-
age Î(x) whose values are n 2 {1, ..., N}, a colormap
{In}Nn=1, and cluster sizes {wn}Nn=1

2: for each pair of color channels (c1, c2) 2
{RG,GB,RB} do

3: Initialize accumc1,c2 to zero
4: for A= (m·�A, l·�A), m, l2{0, ...,M} do
5: for ✓k =

⇡
K , k 2 {1, ...,K} do

6: for n 2 {1, ..., N} do
7: d = |(A�In(c1, c2))⇥(cos(✓k), sin(✓k))|
8: if (d < ⌧) ^ (m·�A > In (c1)) ^

(l·�A > In (c2)) then
accumc1,c2(k,m, l)+ = wn·f (kA�Ink)

9: Â = argmax{accumR,G⌦ accumG,B ⌦ accumR,B},
where ⌦ is an outer product

10: Return

where [·] is an indicator function that equals 1 if true and
0 otherwise. The term [A > I(x)] equals 1 if all elements
of A are greater than the corresponding elements of I(x).

A huge value of A � 1 might be chosen as the solution,
since it maximizes Eq. 7 with all of the pixels in the same
large cone. To prevent this, we give a larger weight to val-
ues of A that are close to the pixels’ values. Formally, we
optimize:

argmax

A

X

x

X

k

f (kI(x)�Ak) ·

[d (I (x) , (A,�k, ✓k))<⌧ ] · [A>I(x)] , (8)

where f(y)=1+ 4·e�y is a fast decaying weight that gives
preference to values of A in the vicinity of the pixels’ dis-
tribution.

3.3. Optimizing Computational Efficiency
The proposed scheme, which includes collecting votes

from all pixels for all angles and air-light candidates in the
3D RGB space, is computationally expensive. Therefore,
we propose the following approximations, which signifi-
cantly accelerate the computation while maintaining accu-
racy. The first, clustering the colors in the image and using
the cluster centers instead of all the pixels. The second, per-
forming the voting scheme in two dimensions. The voting
is repeated three times, with only two of the (R,G,B) color
channels being used each time.

Color clusters. Before we start the Hough voting we
quantize the image into N clusters. We do this by convert-
ing the RGB image into an indexed image with a unique
color palette of length N . This gives us a set of N typi-
cal color values, {In}Nn=1, where N is much smaller than



Figure 2. Hough votes for the Schechner image (Fig. 4). [Top] The color clusters {In}Nn=1 are projected onto 3 different 2D planes.
Each cluster n is marked by a circle with a size proportional to wn. The ground-truth (GT) air-light is marked by a green circle while
our estimate is marked by a purple diamond. Each colored cluster votes for the GT value, where different colors indicate different haze-
lines. The gray colored clusters do not vote for the GT since the following holds: [A>In] = 0. [Bottom] The three voting arrays,
accumc1,c2 , (c1, c2) 2 RG,GB,RB. Best viewed in color.

the number of pixels in the image. In addition, we have
{wn}Nn=1, the number of pixels in the image belonging to
each cluster. During the Hough voting procedure, each rep-
resentative color value In votes based on its distance to the
candidate air-light, and the vote has a relative strength wn.
Therefore, the final optimization function is:

argmax

A

X

n

X

k

wn · f (kIn �Ak) ·

[d (In, (A,�k, ✓k))<⌧ ] · [A>In] . (9)

Two-dimensional vote. Calculating the full 3D accumu-
lator for all possible air-light values is computationally ex-
pensive. Therefore, we perform this calculation in a lower
dimension. The accumulator can be seen as the joint prob-
ability distribution of the air-light in all three color chan-
nels, where the final selected value is the one with the maxi-
mal probability. By performing the accumulation two color
channels at a time, we calculate three marginal probabili-
ties, where each time the summation is performed on a dif-
ferent color channel. Finally, we look for a candidate air-

light that will maximize the 3D volume created by the outer
product of the marginal accumulators.

The proposed method is summarized in Alg. 1.

4. Experiments
We validate the proposed method on a diverse set of im-

ages. In all of our experiments we use the following pa-
rameters: N = 1000, the number of color clusters for each
image (some images have less typical colors, resulting in
empty clusters and N < 1000 in practice); K = 40, the
number of angles, i.e., haze-lines, in each plane; all of the
pixels’ intensities are normalized to the range [0, 1], and
therefore we set �A = 0.02 and M =

1
�A ; the thresh-

old ⌧0 = 0.02 determines whether a pixel In supports a
certain haze-line.

4.1. Algorithm Visualization
Fig. 2 [Top] shows the distribution of the clustered pixels

of the Schechner image (shown in Fig. 4), in RGB space.
We show 2D plots since these projections are used in the



Figure 3. Votes and distributions in failure cases. The left column shows accumR,G for each image, while the other columns show
the breakdown of votes for three air-light candidates. Each colored cluster votes for the marked candidate, where different colors indicate
different haze-lines, and gray colored clusters do not vote. The air-light candidates are, from left to right: the GT (green circle), our
estimate (purple diamond), and a different candidate that received less votes (black triangle). [Top] Votes for Forest (Fig. 1), here we have
a magnitude error. [Bottom] Votes for Road (Fig. 4), here we have an orientation error. Best viewed in color.

2D voting procedure (step 8 in Alg. 1) as well as provide
better visualization. Each cluster n is marked by a circle
with a size proportional to wn. The ground-truth air-light is
marked by a green circle while our estimate is marked by a
purple diamond. The air-light is pointed at by the strongest
haze-lines. Each colored cluster votes for the ground-truth
value, where different colors indicate different haze-lines.
The gray colored clusters do not vote for the ground-truth
since the following holds: [A>In] = 0.

Fig. 2 [Bottom] depicts the three Hough transform ar-
rays, accumc1,c2 , (c1, c2) 2 RG,GB,RB as a function of
the candidate air-light values. The color-map indicates the
number of votes. In this case, the ground-truth air-light had
the most votes in all planes (strong yellow color).

Fig. 3 shows two failure cases of our method. On the
left accumR,G is depicted with three different air-light can-
didates marked by a green circle (the GT value), a purple
diamond (our estimation) and a third one, a value that did
not receive enough votes (a black triangle). For each of
these candidates, the supporting haze-lines are shown.

Fig. 3 [Top] illustrates the analysis of votes for the For-
est image (Fig. 1). We incorrectly estimate the magnitude
of the air-light, due to large clusters that were less bright
than the air-light. On the right, we demonstrate the votes to
a candidate that is far from the pixel distribution, and there-
fore its votes have a lower weight.

Fig. 3 [Bottom] shows the analysis of votes for the Road

image (Fig. 4). We estimate the air-light to have a higher
red component (an orientation error). This error is caused
by bright pixels that have a high red value. The candidate
shown on the right, which is marked by a black triangle, is
the point of convergence of numerous haze-lines, however
it gains fewer votes than both the GT and our estimation as
the lines pointing to it do not contain many pixels.

4.2. Natural Images
A diverse set of 40 images was used in [1] to quantita-

tively evaluate the accuracy of the estimated air-light. This
set consists of 35 images that contain points at an infinite
distance from the camera, whose color is the air-light A.
Five additional images were generated by cropping, so that
the sky is no longer visible in the image, yet the air-light is
known. This procedure verifies the algorithms’ robustness
in cases where the air-light is not visible (as is often the
case, for example in aerial photos). The authors manually
marked the distant regions to extract the colors which are
used as ground-truth. Even though they graciously sent us
their data, we also manually marked regions of extremely
distant scene points, in order to evaluate the accuracy of
the ground-truth, as well as the accuracy expected from an
automatic algorithm. The median L2 difference between
our manual selections was 0.02, which we now consider a
lower bound to the accuracy of automatic air-light estima-
tion methods.



Figure 4. Evaluating the accuracy of the estimated air-light on natural images. Top: Examples of hazy images, along with their
manually extracted ground-truth air-light (GT), and the results of Sulami et al. [15], He et al. [7], Bahat and Irani [1], and ours. Hough
votes for Schechner and Road are depicted in Figs. 2,3, respectively. Bottom: L2 errors calculated on 40 hazy images (for which the
ground truth could be manually reliably extracted ).

The complete breakdown of this experiment is depicted
in Fig. 4[bottom], where for each image we show the error
of our method and the errors of [1, 7, 15]. We also present a
table summarizing the errors. Generally, our method and [1]
outperform [7] and [15]. Compared to [1], our method
results in a lower median error, with slightly higher mean
and variance. Interestingly, the performance comparison of
both methods is not always consistent, i.e., on some images
we perform better than [1], and vice versa. The performance
depends on the extent the image adheres to the prior used by
each method.

A few example photos are shown in Fig. 4[Top] together
with the ground-truth air-light colors and the ones estimated
by the four methods. The error bars corresponding to them
in Fig. 4[Bottom] are labeled. In the Road image our error
is larger than [1]. As seen in Fig. 3 this is caused by several
bright pixels that have a high red value. In the Schechner
image our method outperforms all methods. The Hough
votes for this image are depicted in Fig. 2. In the Train
image all methods except [15] perform well. In the Vessel
image all methods yield relatively high errors. This is prob-
ably because the air-light is not uniform across the scene.

To make sure our method is not over-fit to the dataset
from [1] we tested it on additional synthetic and natural im-
ages, detailed below.

We tested our algorithm on additional challenging natu-
ral hazy images that contain a clear patch of sky. First, we
estimated the air-light using the entire image, and received
an average error of 0.116 (median error 0.091).

Second, in order to test performance in images that do
not contain sky patches, we repeated the estimation process
with a cropped image. The average error increased to 0.231
(median error 0.25). The images are shown in Fig. 5, where
the cropped region is marked by a dotted line. The esti-
mated air-light values of the full and cropped images are
shown, as well as the GT value extracted manually from the
images. Our sky-less estimations are close to the ones es-
timated from the full image. The largest error, both before
and after cropping, was calculated for the right image on the
second row from the top - it had an L2 error of 0.35.

4.3. Synthetic Images
In [15] hazy images were simulated from haze-free RGB

images and their distance maps, gathered from the Light-
fields [8] and the Middlebury [13] datasets. The transmis-
sion maps were calculated by t(x) = e��d(x), and � was
chosen such that the most distant object in the scene re-
ceived t = 0.1. The air-light magnitude was uniformly
sampled in the range [0.8, 1.8] and the orientation was uni-
formly sampled from the 10

� cone around [1, 1, 1]. The
sampling process was repeated three times for each image
and the results are reported in [15]. The simulated hazy
images are not available online, therefore we did our best
effort to gather the clear images and followed the same pro-
tocol for synthesizing hazy images. Since these are not the
exact same images, we cannot do a per-image comparison.
Instead we report average and median errors in Table 1.

Some of the images in this dataset are indoor images,



Orientation Magnitude l1 Endpoint Error
He Tan Tarel Sulami ours He Tan Tarel Sulami ours He Tan Tarel Sulami ours

Mean 3.218 3.576 3.253 0.581 0.043 0.172 0.218 0.412 0.157 0.178 0.147 0.177 0.278 0.103 0.141
Median 3.318 3.316 3.49 0.22 0.037 0.141 0.208 0.393 0.116 0.095 0.144 0.178 0.286 0.077 0.106

Table 1. Errors on synthetic images. Values for He [7], Tan [16], Tarel [17] and Sulami [15] are all taken from [15] for comparison. Our
method evaluates air-light orientation significantly better than other methods, while it is comparable in magnitude. It was shown in [15]
that estimating the orientation correctly is critical to ensure faithful colors in the dehazed image.

Figure 5. Algorithm stability without visible sky. The shown
images were given as input to the algorithm twice, with the second
time using only a portion of the image (marked by a dotted line),
which does not contain a sky region. The estimated air-light colors
are shown above the image, as well the GT air-light, which was
extracted manually. Photographs courtesy of Dana Arazy.

whose depth distribution is significantly different from that
of outdoor images. Despite that, our results are competi-
tive. Specifically, our orientation estimation is the most ac-
curate, which is significant. It has been shown in [15] that
estimating the air-light’s orientation is more important than
its magnitude, since errors in the orientation induce color

Figure 6. Synthetic images. Two of the synthetic images tested.
The average results on the entire set are reported in Table 1.

distortions in the dehazed image, whereas magnitude errors
induce only brightness distortions. Fig. 6 shows two exam-
ples of synthetic images used in this experiment.

4.4. End-to-End Dehazing
For completeness, Fig. 7 shows end-to-end dehazing re-

sults using both the air-light estimation described in [7] and
the proposed method, and the dehazing method [2]. Using
different air-light values shows the effect of the estimation
on the output dehazed image. The top row shows the Forest
image, for which our estimated air-light has a magnitude er-
ror, as shown in Fig. 3[Top]. This estimation error leads to
an error in the transmission map, and some distant regions
look faded in the output, as seen in the area circled in black
in Fig. 7b. The bottom row shows a successful example
where the air-light was accurately estimated for the Schech-
ner image. The wrong value estimated by [7] leads to a
completely wrong transmission map in Fig. 7c, while the
transmission in Fig. 7d approximately describes the scene
structure.

4.5. Run-time
The algorithm’s run-time depends on the following pa-

rameters: the number of pixels in the image P , the number
of airlight candidates (in each color channel) M , the num-
ber of color clusters N and the number of haze-line orien-
tations K. The conversion from RGB to an indexed image
has a run-time complexity of O(NP ), while the air-light es-
timation using the indexed image has a run-time complexity
of O(NKM2

).
Notably, the proposed algorithm’s complexity is linear



a) air-light estimation [7], dehazing [2] b) proposed air-light estimation, dehazing [2]

c) air-light estimation [7], dehazing [2] d) proposed air-light estimation, dehazing [2]

Figure 7. End to end dehazing. Top row: dehazing results of Forest. Bottom row: dehazing results of Schechner. Left: using the air-light
estimated by [7], Right: using the air-light estimated by the proposed method. The dehazing method [2] was used for dehazing.

in the number of pixels in the image, compared to [1, 15]
which are quadratic.

As a reference, the run-time of our MATLAB implemen-
tation on a desktop with a 4th generation Intel core i7 CPU
@3.4GHz and 32GB of memory is on average 6 seconds for
a 1Mpixel image.

5. Conclusions
We presented a fast and efficient method for estimating a

global air-light value in hazy images. The method is based
on the haze-line prior that has recently been introduced.
That prior claims that pixels’ intensities of objects with sim-
ilar colors form lines in RGB space under haze. These lines
intersect at the air-light color and we take advantage of this
observation to find their point of intersection.

We fix a set of line directions and search for a point so
that all lines emanating from it, in the given line directions,
will fit the data. For that we use Hough transform, where
the point with the highest vote is assumed to be the air-light
color. As running the Hough transform naı̈vely is compu-
tationally expensive, we proposed two techniques to accel-
erate the algorithm. One is to work in 2D instead of 3D
by projecting pixels’ values on the RG, GB and RB planes.
The second is by clustering pixels’ values, which enables
us to collect votes for a candidate air-light only from cluster
centers and weigh each vote by the cluster size, rather than
collecting votes from all pixels.

The algorithm was evaluated on an existing dataset of
natural images, as well as several synthetic images and ad-
ditional natural images that we gathered. It performs well
on all. Our algorithm is fast, and can be implemented in
real-time.
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