
In Situ Target-Less Calibration of Turbid Media

Ori Spier
Technion - IIT

orispier@yahoo.com

Tali Treibitz
University of Haifa

ttreibitz@univ.haifa.ac.il

Guy Gilboa
Technion - IIT

guy.gilboa@ee.technion.ac.il

Abstract

The color of an object imaged in a turbid medium varies
with distance and medium properties, deeming color an un-
stable source of information. Assuming 3D scene structure
has become relatively easy to estimate, the main challenge
in color recovery is calibrating medium properties in situ,
at the time of acquisition. Existing attenuation calibration
methods use either color charts, external hardware, or mul-
tiple images of an object. Here we show none of these is
needed for calibration. We suggest a method for estimat-
ing the medium properties (both attenuation and scattering)
using only images of backscattered light from the system’s
light sources. This is advantageous in turbid media where
the object signal is noisy, and also alleviates the need for
correspondence matching, which can be difficult in high
turbidity. We demonstrate the advantages of our method
through simulations and in a real-life experiment at sea.

1. Introduction

Recently, there is increasing interest in the effects of par-
ticipating media on optical applications [1, 2, 11, 21, 25, 26,
30]. Here, we aim to recover the inherent optical properties
of a homogeneous scattering medium (attenuation and scat-
tering) such that, given a rough 3D structure we can recon-
struct color-consistent scenes, i.e., an object will have the
same reconstructed color regardless of the imaging distance
or water properties (Fig. 1). This is crucial in order to enable
color as a reliable information source for scientific research.
For example, coral reefs are endangered world-wide, and
their color is an important cue for their health [27].

The estimation has to be done robustly, in situ,
since medium properties exhibit spatio-temporal variations.
Some methods achieve this using additional hardware that
can be cumbersome and limiting, such as calibration targets
at a fixed distance [31], or a transmissiometer [7]. Others
use multiple images of the same object [11, 19, 32] and re-
quire correspondence matching in a challenging medium.
Here we ask ourselves: can the medium reveal its proper-
ties without any external objects or hardware? The answer

Figure 1: Color consistency visualization. a) Object imaged in
free space. b) Object imaged underwater, 140cm away. c) Patches
arranged in two rows per patch. Bottom rows show measured
color values from underwater images along the tested distances
with the free space value at the left. Color degradation is clearly
visible. Top rows show the colors are significantly improved with
our target-less calibration method (TL in Table. 1). Images and
patches are white balanced according to free-space patch #1, and
gamma corrected for presentation.

is yes. We present a novel target-less calibration method, al-
lowing systems to almost seamlessly calibrate themselves,
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while using the same hardware used for the imaging itself.
When imaging in scattering media, even when there is

no object along the line-of-sight (LOS), significant signal is
still acquired. This signal consists of light that is scattered
back from the medium to the camera, termed backscat-
ter. Most previous estimation methods are hindered by
backscatter and estimate only attenuation, assuming negli-
gible backscatter. Contrary to that, we harness the backscat-
ter and use it as our calibration target, removing the need to
carry extra hardware. We show that using two images of the
backscatter in slightly varying light source locations enables
estimation of attenuation. Once attenuation is estimated, it
is used to estimate scattering parameters using one image.
We demonstrate the advantages of our method through sim-
ulations and a real-life experiment in turbid water.

2. Previous Work
To compensate for the effects of the medium, two com-

ponents need to be accounted for: attenuation and scatter-
ing. For standard color imaging, three attenuation param-
eters must be estimated, one per color channel. These can
be accurately measured externally with a transmissiometer
or spectrometer [7] that are expensive and cumbersome. It
is also difficult to use these measurements as-is properly in
computer vision or imaging applications, due to differences
in sensor spectral sensitivity and acceptance angles [8].

The most common and simple method for estimating at-
tenuation from images is to acquire an image of a known
calibration target at known distances [3, 31]. This requires
a calibration target, which is also cumbersome, especially
with underwater vehicles. The requirement for an external
target is alleviated in several methods that use multiple im-
ages of the same object from several distances, where only
their difference has to be known [32], or that are known by
using a sonar [19] or structure-from-motion [11]. In [10],
the grey-world assumption is used instead, but this does not
always hold, for example, when looking into the water col-
umn. All these methods (except [11]) ignore backscatter.
Backscatter can be ignored when the light source is put fur-
ther away from the camera, but this reduces signal-to-noise-
ratio [14], and sometimes difficult to implement.

Backscatter was previously removed by Tsiotsios et
al. [30] by using the characteristic that backscatter satu-
rates quickly [28], and working beyond the saturation dis-
tance. Other works removed backscatter using multiple im-
ages [28, 29]. These demonstrated visibility improvement,
but not consistent physical reconstruction. The same holds
for recent underwater single image methods [5, 6], and sin-
gle image dehazing methods [12, 16]. In addition, until now
single image methods have been demonstrated only for am-
bient illumination. In our case the illumination is artificial
and its non-uniformity precludes their application. In [11]
backscatter is estimated using a simplified model in a global

optimization framework, requiring multiple object images.
In general, fully modeling scattering requires estimating

many parameters: scattering coefficient per wavelength per
angle. The popular Henyey-Greenstein approximation [17]
relaxes this difficult requirement by formulating a phase
function that depends on two parameters per wavelength.
Thus, in the case of color imaging, nine parameters are
required. These have previously been estimated in a con-
trolled lab setup [23] that imaged the appearance of a dif-
fuse light bulb in a diluted medium. The medium param-
eters were found by minimizing the error of the difference
between medium and clear water images vs. theoretical sin-
gle scattering image formation model. To implement this
method in situ an additional diffuse lamp that is not used
for imaging needs to be added. We want to avoid that as
in underwater vehicles it means requiring additional power,
space, cables and hardware. In [13], the method from [23]
was extended to handle any phase function, using fixed size
samples in an optical table setup and comparing a Monte-
Carlo simulation to 18 acquired images.

Compared to previous works, we propose a simple and
efficient in situ method for turbid water medium parameters
calibration based on back-scattered light, that uses only the
actual hardware used for imaging. Our method is the only
in situ method that calibrates both attenuation and scattering
properties and once the calibration is done, the color can be
reconstructed from single object images.

3. Image Formation Model
The setup (depicted in Fig. 2) contains a pinhole camera

at world coordinates Xcam = (0, 0, 0), with the z-axis de-
fined as the optical axis. An artificial light source is located
at XS and an object at XO (Fig. 2 left). We assume ambi-
ent light can be neglected as it is significantly weaker than
the artificial source, or can be acquired and subtracted.The
direction of the main light source axis is ˆ

dS (a unit vector).
The total irradiance It sensed on the pixel x is composed of
two components [18, 28]:

It(x) = Id(x) +B(x) , (1)

where Id is the direct component– the attenuated object sig-
nal. The term B is the backscatter, that is composed of light
that is scattered back from the medium into the sensor along
the LOS, carrying no object information. We neglect for-
ward scattering following [28] that showed this component
is usually weaker than the other two. For clarity the coordi-
nate notation x is omitted from now on. We assume images
are corrected for vignetting before processing.

In each color channel k = R,G,B the object signal Id is:

I

(k)
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I

(k)
S ·Q(✓) · cos(�) · L(k)

O · e�c(k)·(RS+Rcam)

R

2
S
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Figure 2: Image formation model and notations. [Left] Com-
ponents of the signal arriving from object, I

d

. [Right] Compo-
nents forming a single scattering event, B

point

(X0). Integrating
B

point

(X0) along the LOS yields the backscatter signal B.

where IS is the source intensity adapted to the camera sensi-
tivity. We assume the spatial distribution of the light source
Q is radially symmetric, depending on ✓, the angle between
source direction and object. We assume the source illumi-
nates not more than half a sphere, i.e., Q(✓ > ⇡/2) = 0.
LO is the reflectance of the object. We assume the object is
Lambertian, such as in [11], i.e., light is scattered from the
object equally in all directions, and depends on the cosine of
the angle � between the incident light direction and the nor-
mal of the surface. The medium attenuates the light expo-
nentially as a function of the attenuation coefficient c. The
distances RS and Rcam depict the distance between source
and object, and between object and camera, respectively.
In addition, the light source is subject to free space falloff
1/R

2
S. Note that (k) indicates the color channel, and not a

power operation.
For scattering, we follow the single scattering

model [28], i.e., every ray emitted from the source
goes through not more than one scattering event before
reaching the sensor. A scattering event from a point in
space X0 contributes:

B
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where � is the Volume Scattering Function (VSF) of the
medium, that depends on the scattering angle  and color.
The variables Rs, Rcam,  depend on the coordinate X0.

The total backscatter signal B stems from integrating
B

(k)
point(X

0
) along the LOS from the camera to the imaged

object at XO.

B
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. (4)

When there is no object along the LOS the integration
ends at infinity and we denote the resulting backscatter B1,

B
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B
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0
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. (5)

The shape of the scattering function in the ocean (as a
function of both color and angle) mostly depends on the

distribution of the sizes and types of the scattering particles
in the water. Due to the complexity of measuring such data
there are not many measurements available. The two main
sets that are used are from [24] and [20]. All these measure-
ments were taken by using instruments with narrow band
sensitivity centered around 520nm. Extrapolations are sug-
gested in [22].

Here, we follow a common approximation [23] and
model the VSF by the Henyey-Greenstein Phase Function
(HGPF) [17]:
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where �HG, g are parameters describing the medium.
The analysis above demonstrates why when objects are

imaged in a medium their color varies with distance and
medium properties. Combining Eqs. (1,2), the recovered
object intensity is:
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·R2

S · ec(k)·(Rcam+RS)

Q(✓) · cos(�) . (7)

Examining Eq. (7) the correction parameters can be di-
vided into several groups. First, geometrical setup vari-
ables that can be measured: camera and source locations
XS and Xcam and light source direction ˆ

dS. Second, hard-
ware properties (Q) that can be calibrated. Third, scene
structure XO that can be roughly estimated (by stereo,
sonar, etc.) [26]. Last, medium parameters

�
c

(k), g

(k),
�

(k)
HG

�
, which require calibration per color channel in every

medium.

4. Medium Parameters Calibration
In this section we detail our proposed calibration algo-

rithms. First, we combined and improved several existing
methods that use object images for calibration, to use as
a baseline for comparison. This method is termed Object
Based (OB) from now on. Second, we describe our novel
Target-Less (TL) calibration method, split into the attenua-
tion calibration step, and scattering calibration step.

4.1. Object Based (OB) Method

To have a baseline to compare to, we have improved the
method suggested by Yamashita et al. [32]. There, the at-
tenuation coefficient c is estimated using two images of the
same object acquired at different distances from the camera
while assuming the backscatter is negligible. Then,

c =

ln


It,1
It,2

⇣
RS,1

RS,2

⌘2
· Q1

Q2
· cos(�1)
cos(�2)

�

(RS,2 +Rcam,2 �RS,1 �Rcam,1)
, (8)



where the sub-indexes 1 and 2 represent two different im-
ages. This method was originally demonstrated in a water
tank, and as we show later the method is not stable as-is.

We made several improvements to make it more robust.
First, [32] completely ignores backscatter. In the case of
a high turbidity medium this harms the results. Therefore,
as suggested in [30], before applying Eq. (8) we subtracted
from the images a saturated backscatter signal B1, imaged
beforehand, in order to overcome the backscatter effect.
This is also not enough as-is, because a single backscat-
ter image is noisy. Therefore we extended [30] and used an
average of 5 backscatter images as the backscatter signal.

Second, instead of 2 object images we used 8 images
in different distances and calculated c using Eq. (8) for all�8
2

�
= 28 possible image pairs. This yielded 28 different

estimated values for c. To choose among them we applied
a voting scheme – the value that got the most votes was
chosen as the calibration result (we used 0.025m

�1 incre-
ments). This worked well in clear water. However, in turbid
water the voting was not decisive and we chose the median
value of all estimations as the result. Note that this method
represents all object-based methods, such as [11], as they
are based on the same calibration equation, with added steps
for 3D estimation and registration of images.

4.2. Target-Less (TL) Calibration: Attenuation

Here we show that by using at least two backscatter im-
ages the attenuation coefficient can be derived, without us-
ing any calibration target.

Let us consider two backscatter images, BI
1 and B

II
1

that are taken with two different source locations, where the
source is moved �z along the optical axis between acqui-
sitions. The light source points forward, i.e., ˆ

dS = [0, 0, 1],
and all light from source is emitted forward. Since we are
looking at B1 images (i.e., no object along the LOS), the
coordinates of this movement can be described by the cam-
era movement, as depicted in Fig. 3a,b:

z

II
cam = z

I
cam ��z, (x, y)

I
cam = (x, y)

II
cam = (0, 0) . (9)

For the pixel at x = 0, i.e., the pixel whose LOS is the
optical axis., the difference between each point X0 along the
LOS in the calculation of BI

1 and B

II
1 is just Rcam:

R

II
cam(X

0
) = R

I
cam(X

0
) +�z , 8X0

. (10)

The rest of the parameters are related to the source, and
therefore do not change. Plugging Eq. (10) in Eq. (5) yields
the simple relation

B

II
1(x = 0) = e

�c·�z ·BI
1(x = 0) . (11)

Then based on Eq. (11), the attenuation coefficient c per
color channel k is:

c

(k)
= � 1

�z

ln

(B

II
1)

(k)

(B

I
1)

(k)
. (12)

Figure 3: Image formation of the target-less attenuation estima-
tion method. a,b) The camera images an area with no object, and
then moved �z backwards. Due to the geometrical symmetry, the
difference in the B1 value at the central pixel between the two
images, is just the attenuation in the added �z path to the camera.
c,d) Actual calibration images taken underwater (green channel),
the red squares denote the central image area, from where the cal-
ibration values are taken. Black object in the left is the strobe.
Image areas close to the strobe are overexposed to have enough
SNR in the central area.

Since the calibration image is an image of the medium it-
self, there is no need for finding correspondence between
multiple images of the same object as in [11, 32], which
can be difficult in a turbid environment. Using x = 0 to es-
timate attenuation decouples the attenuation from scattering
and stabilizes the calibration.

In order to increase the robustness of this method we
took the median value from a square of 100X100 pixels at
the center of the frame. Furthermore, we used more than 2
images, performing a least squares linear fit between log of
the intensity and source offset. The negative slope of this
linear fit is the attenuation coefficient c. To handle outliers
we try all fits that have up to 25% outliers and choose the
one with the lowest RMS error. The linear fit quality can be
used as an indication for the accuracy of the calibration, a
criterion that is missing in other methods.

The backscatter at the center of the image has to be
strong enough for the camera to sense. This means that the
method is less suitable for clear water. In our experience,
the method worked well with our setup in approximated
daylight visibility of 1m to 6m (i.e., the approximated dis-
tance at which a diver recognizes his buddy underwater).

Fig. 4 depicts simulated properties and expected perfor-
mance of this method according to the single scattering
model. Fig. 4a demonstrates a single calibration with and
without noise. Noise was modeled as photon noise model
with an STD of 1% from signal intensity,which yields a 3%



Figure 4: TL simulations. a) Clean and noisy simulation of
TL, showing log of central image intensity vs. source offset
(c = 0.3m�1, g = 0.55), using 1% photon noise. b) Average
relative error vs. number of calibration images and c value, with
1% photonic noise. For each case, 500 simulations of attenuation
extraction were performed. as the turbidity increases, less images
are needed. c) Minimal source offset required in order to achieve
1% intensity difference at center of image. The higher the attenua-
tion, the smaller this distance can be. Even in low attenuation less
than 10cm are needed. d) g Calibration. After estimating attenua-
tion, the method in Sec. 4.3 yields the expected value (g = 0.5) in
both clean and 1% photonic noisy cases.

error. Fig. 4b depicts the dependency of the accuracy on the
number of images used (each one is taken at a different off-
set), and c. More images or a higher turbidity yield a smaller
error. However, the marginal contribution of each additional
image decreases. The advantage of our method is that as
the turbidity increases, less images are needed. This is in
contrast to object-based methods that suffer loss of SNR in
higher turbidity. Fig. 4c depicts the minimal source offset
needed in order to get a 1% difference in central pixel in-
tensity between two images, as a function of c. The higher
the attenuation, the smaller offset is needed, but even in
low attenuation less than 10cm are needed, which makes
the method very feasible to implement, e.g., by mounting
two strobes in slightly different positions.

4.3. Target-Less Calibration: Scattering

Once c is calibrated, one calibration image can be used
in order to estimate the scattering parameters.

Plugging Eq. (6) into Eq. (5) yields

B1 = G

Z 1

0
Q

e

�c·(RS+Rcam) · (1� g)

R

2
S · (1 + g

2 � 2g cos )

dX0
, (13)

where the gain G is defined as G = IS�HG.
Examining Eq. (13), we see there are two unknown

medium parameters left after c is estimated: G, and g. We
propose to solve them by the following optimization:

(g̃,

˜

G) = min

g2⌦g

min

G2⌦G

⇥
E

�
B

measured
1 , B

simulated
1

�⇤
, (14)

where E is an error measure, ⌦G the range of possible gain
values and ⌦g = (0, . . . , 1). This is done separately for
each color channel. Theoretically, c could have been solved
for in the same optimization but our simulations and exper-
iments have shown that when c is unknown Eq. (14) does
not have a single global minimum (detailed in the supple-
mentary material).

To speed the minimization of Eq. (14) and make it more
robust to noise we propose to use a symmetric B1 image
and exploit the symmetry. For example, the backscatter im-
age in Fig. 7a was taken with the source located at X = 0,
pointing parallel to the optical axis, such that the resulting
backscatter image is symmetric along the y axis.

We construct a vector from the values along the symme-
try axis of B1 (Fig. 7a) and solve Eq. (14) along it. We term
it the backscatter center-line. For each value of g 2 ⌦g , we
find the best fit G 2 ⌦G in the L2 sense. The final solution
is the pair of g and G that yield the lowest error. A simula-
tion of the error as a function of g is shown in Fig. 4d. The
minimum in both the clear and noisy image is the ground
truth value in the simulation g = 0.5.

5. Real-World Experiments
5.1. Experimental Setup

We performed our experiments in real conditions at sea
by scuba-diving. We used a Nikon D810 SLR camera, ca-
pable of acquiring raw linear images, with a 20mm Nikon
lens. It was housed in a Hugyfot housing with a dome port.
We used Inon Z240 underwater strobes. The experimen-
tal frame was custom built using aluminum rails (Fig. 5).
We used an underwater color-chart (DGK Color Tools) as
our target object, attached to the rail so it can move along
the optical axis, and stay perpendicular to it, at distances of
70� 140cm. For TL (Sec. 4.2), the light source was placed
on a rail to the side of the camera, that can move horizon-
tally in parallel to the optical axis (Fig. 5c) and was moved
in 5cm steps. Tick marks were drawn on the rail to enable
control on the source distance. Saturated backscatter im-
ages were taken by pointing the setup to an area without
any object. We set the focus and depth-of-field such that the
entire significant backscatter is inside the depth-of-field for
all distances. For the scattering calibration the source was
attached to the camera housing using an off-the-shelf ball
attachment. Note that we used standard off-the-shelf Xenon
strobes that are known to have up to 5% fluctuations in in-
tensity [28] and this method relies on having a stable source.
To minimize this effect we waited several seconds between
acquisition to make sure the strobe is fully recharged.

5.2. System Pre-Calibrations

Our method requires some pre-calibrations, preferably
done underwater. Vignetting was calibrated in daylight
by placing the camera on a tripod and capturing images
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Figure 5: Conducting real-life experiments. [Left] Our setup. An
SLR camera housed in an underwater housing (a) is mounted on an
aluminum frame (b). A rail (c) that can move parallel to the optical
axis is attached to it. The strobe (d) and object are later mounted
on the rail for controlled-distance experiments. [Right] An under-
water view of our system. Light cone is clearly visible, we use it
for estimating water properties.

Figure 6: Attenuation estimation. Experimental results using
both methods in clear [top row] and turbid [bottom Row] sea water
experiments. OB [right Column] , as expected, gives a stable re-
sult in clear water (narrow histogram), but looses stability in turbid
water (OB was calculated using the white patch). TL [Left Col-
umn] fails in clear water, however behaves as expected in turbid
water (good linear fit). All values are in m�1 units.

of a white static calibration patch while rotating the cam-
era between images. This calibration was not done un-
derwater since we did not have a stable underwater light
source. Camera intrinsic parameters were calibrated under-
water with a checkerboard and using the camera calibration
toolbox [9]. Source angular distribution Q was calibrated in
a water tank. We used a static camera pointing at a calibra-
tion target, while rotating the source. We rotated the source
both around its primary axis ( ˆds), and its perpendicular di-
rection (which modifies ✓s). As expected, results showed
radial symmetry around the primary axis, and a cosine dis-
tribution around its perpendicular direction.

5.3. Attenuation Calibration Results

We present results from two experiments (Fig. 6), con-
ducted at sea in clear water (CW) and turbid water (TW).
We compare the performance of TL and OB under these

Figure 7: Estimating scattering properties (g) of red channel, in
TW. a) Backscatter calibration image (B1) acquired in situ. Note
the in-homogeneous medium. b) Rendered B1 using the cali-
brated attenuation and scattering parameters. c) Relative differ-
ence image between the rendering and the input image (linear dis-
play). d) The error of Eq. 14 as a function of g. The minimum is
at g=0.55. e) Values at the backscatter center-line, calibration and
reconstruction values.

different conditions.
Fig. 6a,b depict the result of applying both methods in

clear sea water. OB works well (the histogram is narrow),
whereas TL fails due to weak backscatter values that results
in a low SNR. In TW (Fig. 6c,d) we see the results of OB
are spread and it fails to produce a reliable result, whereas
TL behaves as expected, and produces a reliable linear fit,
with acceptable outliers.

Results of attenuation calibration in the TW experiment
are: c

R

= 0.62m

�1, c
G

= 0.56m

�1, c
B

= 0.58m

�1 using
TL and c

R

= 0.69m

�1, c
G

= 0.64m

�1, c
B

= 0.67m

�1 in
OB. As expected, red channel attenuation is stronger than
the green and blue channels. Additional TL attenuation cal-
ibration results are shown in the supplementary material.

5.4. Scattering Calibration Results (g,G)

Implementation details: We sampled m = 26 points
along the backscatter center line, along the top 30% of this
axis in the image, taking the median value of all pixels from
a 100⇥ 100 square centered around each point. The reason
for using only the top part of the image is that on the top
part the signal is stronger, therefore less subject to noise.

Scattering calibration in TW was done by using the same
backscatter images used for OB. Fig. 7 shows the measured
signal (average of 5 images taken), next to the rendered
backscatter image resulting from the calibrated parameters,
along with an image showing the relative difference be-
tween the two. Numeric results: g

R

= 0.55, g
B

= 0.55,
g

G

= 0.55, G
R

= 0.2, G
G

= 0.45, G
B

= 0.39.

5.5. Evaluation Using Color Consistency
Since we do not have ground truth of water properties,

we judge the results by quantifying color consistency. This



Figure 8: Object reconstruction results. (a) Object image taken
underwater at a distance of 140cm from camera. (b) Object image
in free space. (c) Color corrected image of the underwater object
using object based (OB) Method. (d) Color corrected image using
target-less (TL) method. Images are gamma-corrected for display
purposes. Notice we did not apply any denoising.

means that if the estimated properties are correct, the col-
ors of an object at various distances can all be corrected to
the same value using Eq. (7) regardless of the imaging dis-
tance in the medium, and, they should be consistent with
a free-space image of the same object taken with the same
setup. This is also one of the important applications for
our method: recovering color-consistent underwater images
that can be used for scientific applications.

We acquired underwater images of a target object in dif-
ferent distances from the camera. Fig. 8 demonstrates the
degradation of an object between free-space (b) and an un-
derwater distance of 140cm (a), and our corrections (c,d).

For quantitative evaluation, we compare the colors in lin-
ear RGB space. Each color can be viewed as a vector in
RGB space. We define the distance between two colors A1

and A2 as the angle ↵ between these vectors:

cos↵ = A1 ·A2/(|A1| · |A2|) . (15)

This measure ignores global image intensity which we do
not aim to recover.

We compare results from several methods (summarized
in Table 1). All consist of two basic steps: backscatter re-
moval, and attenuation compensation. Backscatter can be
removed by two methods. In the first (used in TL:sat, OB)
we subtract saturated backscatter following [30], where we
use an average of 5 backscatter images to reduce noise. In
the second (used in TL) we calculate B using the known
geometry and parameters by TL (c,g and G). Attenuation
is compensated using Eq. (7) with calibrated c either by TL
or OB. We also demonstrate the effect of correcting only a
single degradation factor in TL (TL:a,TL:b).

Table 2 depicts a quantitative comparison of the error (↵)

name backscatter removal attenuation correction
TL:a none TL result (c)
TL:b TL result (g,G) no
TL TL result (g,G) TL result (c)
TL:sat saturated image subtraction TL result (c)
OB saturated image subtraction OB result

Table 1: Summary of tested methods. Notice the first two
(TL:a, TL:b) are shown to demonstrate the effect of correct-
ing only a single degradation factor in TL.

patch raw TL:a TL:b TL TL:sat OB
1 2.9 1.5 3.6 1.8 1.9 1.8
2 2.6 1.3 3.5 1.7 2.3 2.1
3 2.8 1 3.5 1.6 1.8 2.3
4 2.7 0.8 3.6 1.8 1.9 2.5
5 2.1 0.9 3.9 3.7 3.9 4.3
6 2.8 1.2 5 5.5 10.1 9.4
7 21.1 18.1 12.9 9.1 6.5 7.6
8 9.9 9.9 5.3 4 3.1 3.5
9 5.3 7.7 1.8 4.6 4 3.4
10 8.3 8.2 5.8 5.0 4.5 4.2
11 3.9 2.3 2.7 1.9 4.3 4.5
12 20.1 16.9 14.2 11.0 9.1 10.0
13 11.0 7.9 6.3 5.3 10.4 9.4
14 12.0 9.7 7.4 3.7 3.7 4.3
15 6.4 7.0 6.2 6.4 6.5 6.0
16 9.3 6.2 6.4 3.1 2.2 2.9
17 5.1 3.2 3.9 1.6 1.5 1.8
18 5.4 3.4 4.6 1.5 3.7 3.2
median 8.3 7.7 5.8 4 4 4.2

Table 2: A quantitative comparison of the error (↵) between
the free space image and correction of the furthest image
(worst color deterioration), from the TW experiment. Meth-
ods are detailed in Table 1. Median was calculated exclud-
ing patches #2 . . .#6 as they have the same color as #1.

between the free space image and correction of the furthest
image (worst color deterioration). We compare five differ-
ent variants that differ in the backscatter removal method
and attenuation compensation (summarized in Table 1). The
analysis is conducted on all patches of the color-target.
Patches are numbered from left to right between 1 � 18,
where 1 stands for the top-left white patch, 6 stands for the
top right black patch, and so on (see Fig. 1).

The colors are visualized in Fig. 1, that depicts the colors
of the raw patches in all distances together with our correc-
tion. The deterioration of raw color with distance is clearly
visible, and so is the effectiveness of our correction.

Fig. 9 depicts in more detail the color consistency results
of four selected patches in different colors (white, red, yel-
low, and brown) along all tested distances. Graphs for all
patches are found in the supplementary material.

Looking at the median values, the attenuation coeffi-



Figure 9: Color consistency results of four patches. A compar-
ison of correction methods for patches #1,7,8,13, in different un-
derwater distances. Different colors degrade differently, and both
TL and OB methods improve color consistency. Similar graphs
for all color patches are shown in the supplementary material.

cients from TL perform slightly better than OB. Note that
OB was implemented in favorable conditions, where the
registration between images was done manually. In prac-
tice, doing it automatically can be difficult. For backscat-
ter removal, Using g (TL) or saturated backscatter (TL:sat)
show similar median performance, but the performance is
not consistent and changes significantly between patches.
In some TL achieves half the error of TL:sat and in some
the opposite. This is probably due to real-environment out-
liers such as particles in both the calibration and observed
images. TL:sat is faster to implement, however using g may
add an insight on the medium itself, and might be more ac-
curate in very close distances that we did not examine.

Overall, TL, TL:sat and OB exhibit comparable per-
formance, and all three methods significantly improve the
color consistency. The differences between them might re-
flect limits of in situ reconstruction accuracy that is possi-
ble to achieve with a single attenuation coefficient per color
channel (explained in Sec. 5.6). The raw error varies sig-
nificantly between the patches, up to 10-fold. The color of
the backscatter is close to white, so it seems the gray-levels
patches barely change their color. However, their apparent
color stems from the backscatter, not from reflected color.
Patches that have a relatively high red value have a high raw
error, and there our method has the highest influence.

5.6. Dependency of OB on Patch Color

During our experiments we noticed that the calibrated
values using OB differ when the method (Eq. 8) is applied
on different patches, even in the clear water experiment.
This is an interesting point worth discussing although OB
is not the main focus of the paper. Differences of calibrated
c from several patches are depicted in Fig. 10, together with
the reconstruction errors that stem from them. This hap-

Figure 10: Clear water accuracy estimation. [left, center] at-
tenuation calibration using OB method on two different patches
(#7,#18) result in different attenuation values. [right] color con-
sistency analysis of the white patch (#1) using these different pa-
rameters give different results. Best result is achieved when cal-
ibration is done on the object of interest itself, but this requires
re-calibration for every object.

pens because different reflectances interact differently with
the wavelength-dependent attenuation. This analysis sug-
gests limits to reconstruction when using a global value for
c, which we intend to explore in future work.

6. Discussion
Underwater color correction is not an easy task. Al-

though the equations are relatively simple, many parame-
ters and coefficients require in situ calibration. In addition,
the medium is not completely homogeneous and is diffi-
cult to work in. Here we present two variants of a self-
contained method that uses only backscatter images taken
in the medium for calibration, with the same off-the-shelf
components that are used for the imaging itself, without re-
quiring external color-charts or hardware. Since it does not
depend on external objects, it relieves the need for register-
ing calibration images or object matching, which can be dif-
ficult in bad visibility conditions. This makes the hardware
and implementation of our method simpler. In addition, we
showed that even though we relieve the external hardware
requirement, our method’s performance in these difficult
conditions is similar or better to using a color-chart. This
was demonstrated in real, challenging conditions at sea.

From our experiments, in low-turbidity the SNR in the
backscatter images is sometimes too low. Thus our method
will be less stable in these cases. However, in low turbidity
our method is also less needed. As we showed, it has clear
advantages in high-turbidity cases as it utilizes the turbidity
itself and does not regard it as an obstacle. We also suggest
a quality criterion that previous methods do not have.

Our method can be applied in real-time and the setup
can be especially useful in autonomous vehicles such as
cars and boats imaging dynamic scenes in low visibility
conditions (fog, sand-storms, etc.), and forward-looking se-
tups underwater [4]. In addition it can provide dynamic
estimation of visibility limits in autonomous systems, for
example, autonomous decision on maximum safe driving
speed in bad weather [15]. Future improvements may in-



clude handling ambient light, and object dependent color
correction [2]. This work can lead to insights about recov-
ery of scenes from single scene-images, i.e., requiring no
calibration frames at all.
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