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Flat Refractive Geometry
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Abstract—While the study of geometry has mainly concentrated on single viewpoint (SVP) cameras, there is growing attention to
more general non-SVP systems. Here, we study an important class of systems that inherently have a non-SVP: a perspective camera
imaging through an interface into a medium. Such systems are ubiquitous: They are common when looking into water-based
environments. The paper analyzes the common flat-interface class of systems. It characterizes the locus of the viewpoints (caustic) of
this class and proves that the SVP model is invalid in it. This may explain geometrical errors encountered in prior studies. Our physics-
based model is parameterized by the distance of the lens from the medium interface, besides the focal length. The physical parameters
are calibrated by a simple approach that can be based on a single frame. This directly determines the system geometry. The calibration
is then used to compensate for modeled system distortion. Based on this model, geometrical measurements of objects are significantly
more accurate than if based on an SVP model. This is demonstrated in real-world experiments. In addition, we examine by simulation
the errors expected by using the SVP model. We show that when working at a constant range, the SVP model can be a good

approximation.

Index Terms—Computer vision, vision and scene understanding, 3D/stereo scene analysis, camera calibration, imaging geometry.

1 INTRODUCTION

THERE is a growing interest in imaging systems that defy
the single viewpoint (SVP) assumption. Studies have
analyzed general imaging models [12], [34] or special
cameras that do not have an SVP [25], [30], [42]. In this
work, we analyze a common and important class of non-
SVP systems. They are made of a standard perspective
camera looking into a refractive medium through a flat
interface. These systems are commonly used to look at
objects in water. In aquaria, the water body is embedded in
the air-based environment containing the camera. Alterna-
tively, an air chamber enclosing the camera may be
embedded in the water, as experienced by the eyes of human
scuba divers (Fig. 1la) or cameras on underwater robots.
Both cases are equivalent as an imaging model.

The importance of analyzing this system class stems both
from its wide relevance in a range of fields and from the
vision challenges it poses. Besides computer vision, this
system class further affects fields such as oceanic engineer-
ing [31], [32], psychology [23], agriculture [51], biology [39],
geology [36], and archeology. Starting with a motivation of
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human vision, distortions experienced by a lay person
looking into a fish tank become critical for divers (Fig. 1a),
as they use a face mask. As reported in [23], the distortions
cause severe problems of distance perception that have yet
to be explained. Flat interfaces in aquaria were used in
computer vision studies that developed methods of stereo
[33], [49], three-dimensional (3D) recovery by structured
light [13], classification [8], motion analysis [19], and
visibility recovery [21]. In [51], a flat interface is used by a
computer vision module in a system that sorts living edible
fish in agricultural ponds (Fig. 1b). In field operations,
extensive studies deal with stereo scene recovery [11], [28],
[29], [31], [32], [39] by remotely operated vehicles, which
commonly use a flat port (window). This interface is also
used by in-situ microscopy [36] of riverbeds (Fig. 1c).

The related literature has mostly treated flat-interface
systems as perspective [11], [28], [29], [31], [32], [39].
Photogrammetry studies [22], [24], [44] calibrate for system
parameters directly. As we show in this paper, the SVP
assumption is significantly erroneous in general in this system
class. Some studies regarded refraction as yielding a mere
transversal distortion [32], [39] in an SVP system. This
coincided with reports [39] of unexpected and consistent
errors when fitting an SVP model. We believe that such
errors stem from the non-SVP nature of the system, as we
show in this paper. In Fig. 1d, the distortions are seen in a
two-dimensional (2D) object. However, the non-SVP nature
induces worse, 3D distortions which are not a 2D (radial)
mapping of coordinates: Objects occluded under SVP may
appear unoccluded by the system and vice versa. Recently,
Kwon and Casebolt [19] concluded that a refraction model
is needed for calibration and scene reconstruction.

We model this system class and show that it has a non-
SVP. The caustic surface is derived in closed form and
shown to have significant dimensions. Thus, we examine
by simulation the expected errors from using an SVP

1. Morris and Kutulakos [27] used a refractive model to recover a nonflat
water interface.

Published by the IEEE Computer Society
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Fig. 1. Vision through flat refractive interfaces. (a) A diver mask. (b) Fish
moving through a transparent tunnel for online agricultural fish sorting,
courtesy of B. Zion. (c) An underwater microscope for riverbed studies,
courtesy of H. Chezar. (d) An underwater frame. Distortions increase
toward the corner.

approximation for a flat-interface system. We show thatin a
constant range, SVP camera models can be used. In
addition, we suggest a physics-based calibration scheme
for the pixels’ ray map. It is easily applied in the field and
can be based on a single frame. It allows changes of zoom
and focus settings in situ. Based on the ray map,
geometrical tasks can be performed [41]. We demonstrate
this in underwater experiments by scuba diving in the
ocean using different lens settings. Our method signifi-
cantly improves the accuracy of geometrical measurements.
Partial results were presented in [48].

2 BACKGROUND

2.1 Refraction

Consider a ray passing through a medium and a flat
interface, as in Fig. 2. The setup has radial symmetry
around the optical axis z, and r denotes the radial distance
from the optical axis. We assume that the optical axis is
perpendicular to the interface. The ray undergoes refraction
when passing from the medium to a glass interface and
again when passing from the glass to the air, where the
camera resides. According to Snell’s law [4],

n sin 9111edium = Nglass sin 9glass = sin 0‘:111‘7 (1)

where n and ng. are respectively the refractive indices of
the medium (e.g., water) and glass, relative to air. Here,
Omedium, elass; G are the angles of the ray (relative to z) in
the corresponding media. According to (1), the glass
interface (its index of refraction) does not change the
refraction angle 6,;,, for a given Omedium.

While it does not change 0,;, the glass slightly shifts
radially the ray’s point of exit from the interface, since
Omedium 7 Oglass. The effect of this shift is smaller in
magnitude than the effect associated with angular refrac-
tion. For example, for a 5 mm thick glass, Onedgium = 20°,
f=20mm, and d=20mm, the pixel shift caused by
angular refraction is 10 times the lateral shift caused by
the glass. Hence, in this paper we focus on the effects
created by the bulk medium (e.g., water).

In Fig. 2, the distance z is measured from the air
interface. The world coordinates of an object embedded in
the medium are (ry, 2y, ). A ray from this object is imaged to
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Fig. 2. A ray from an object at (ry, z) in the medium intersects a flat
interface at point r,. The ray continues through the air chamber until it
reaches a perspective lens, at distance d from the interface. The image
coordinate of the ray is ;.

a point on the detector array. In this trajectory, the ray
passes through a point on the interface, at a distance r, from
the axis. The value of r, can be calculated using Fermat’s
principle: The ray path between two points is the one that is
traversed in the least time. Accounting for the slower speed
of light in the medium due to n, the optical path length is

L=mn\/(re — 1)’ + 22 + /12 + 2, (2)

where d is the distance between the interface and the center
of projection of the lens (at the plane of its entrance pupil).
Thus, similarly to [10], r, should satisfy the condition®

oL Ty — Ty Ty

0=——=n + . (3)
8rg \/(Tg - 7"W)z + Z\ZV \/rg +d

2.2 The SVP Camera Model

The camera behind the interface is perspective. Therefore,
here we shortly review the model that describes it,
following [15]. Assuming the world coordinates are given
in the camera reference frame, the two sets of coordinates
are related via a 3 x 3 matrix K,

)~(i = KXW. (4)
Here, the world coordinate vector is %, = [:z:w,yw,zw]T
where T denotes transposition. The image homogenous
coordinate vector is X; = [ii,gjhu?i]T. Image coordinates
(zi,y1) are related to the homogeneous coordinates by
[zi, yi] = (1/wi)[Z;, 7:]). The matrix K encapsulates the in-
trinsic parameters of the system

7

f 0«
K=1[0 f ¢/ (5)
00 1

Here, f is the focal length, expressing the distance between
the sensor and the lens’ exit pupil. As our problem has radial
symmetry, we assume a uniform focal length for both  and
y-axes. The coordinates (cy,cy) are the coordinates of the
“principal point” where the optical axis intersects the image

2. The maximum of L is co. Therefore, the finite extremum of L yields the
minimum path length.
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Fig. 3. Notations for radial coordinates used in the paper. A ray from the
object is refracted by the interface, passes the camera pinhole, and
projected to the coordinate r;. If the camera lens introduces distortion,
the distorted image coordinate is r{*. As explained in Section 7.1,
assuming the system is perspective, the object can be projected using
the effective focal length fuciive, 10 the coordinate 7P |f the
system is calibrated using the model in (4) and (6), radial distortion
extent x is added to the coordinate rP***“*. This results in the
coordinate r5VF. The difference between r; and r5'F is the SVP
approximation error ¢. Note that the refraction angle is exaggerated for
purposes of demonstration.

plane. We assume a high quality camera and therefore we do
not account for skew between the x and y-axes.

In addition to the linear operation of projection, the
perspective model also includes nonlinear terms to capture
lens distortion. As in [5] and [15], one may use a model
which includes two parameters each for radial transversal
distortion, x; and k. Usually, tangential distortion can be
neglected [50]. In this model, observed (distorted) pixels
(zdlistort ydistorty are related to ideal pixels (z;,4:) by

1

x;{istort =z + (xi — cm) [/{17’? + /’iQ’f’ﬂa (6)

, distort __

Yot = g 4 (g — ) [m1rf + Kot (7)

where 1} =77 + 77, while % = (zi —¢,)/f, % = (v — &)/ f-

i =

The radial coordinate

T;listort — \/<1.;iistort _ C.'r)2 + (y;listort _ Cy)2
is depicted in Fig. 3. We define
X = T;listort - (8)

as the magnitude of the radial lens distortion.

3 MODELING A FLAT-INTERFACE-MEDIUM SYSTEM

In this paper, we study a system defined by the combined
effect of several elements, following the ray trajectory:

53

T —
\
B

apparent viewpoint?

Fig. 4. Looking through a flat interface into a medium yields a non-SVP
system despite the use of a perspective camera.

medium — interface — air — perspective camera. Based
on the simple principles described in Section 2.1, we now
model the geometry sensed by this system. Note that in
the heart of the system is an SVP camera. Thus, unless
stated otherwise, the terms focal length, center of projection,
and entrance/exit pupil refer only to this internal camera in
air. As we shall show, the system as a whole does not
have a center of projection in general. Intuition into this
can be gained by Fig. 4: Rays coming from different
objects appear as if imaged from different points of view.
These effects are lowered by using a dome-shaped
interface [37], [46], [47] or corrective optical modules
[17], [35]. However, they require precise alignment to the
camera center of projection, in tight tolerances [17], [18].
This rules out changes of zoom or focus by the lens
during the work in situ.

Another interesting phenomenon is illustrated in Fig. 5.
Both the square and the round objects are visible when
viewed in air. However, in water they are projected into the
same pixel. Thus, the squared object occludes the round
one. In addition, Fig. 5 shows that the pixel shift along the
radial axis caused by refraction depends on the object
distance. We elaborate on this in Section 7.1. Thus, from
now on we refer to the following terms:

Definition 1. Radial distortion is a pixel shift along the radial
axis.

Definition 2. Transversal distortion is a radial distortion
whose magnitude depends solely on the radial coordinate.

Definition 3. Nontransversal distortion is a radial distortion
with magnitude that depends on the object distance in
addition to the radial coordinate.

Occlusions are also demonstrated in Fig. 6. Here, images
were taken by a camera looking into an aquarium. The top
image shows the scene when the aquarium was empty. The
bottom image shows the scene when the aquarium was full of
water. On the right side of the scene, there is a red stick visible
in the air. In the water, this object suddenly appears as a fence.
On the left side of the scene, the introduction of water
suddenly introduces an image of a shark. These effects could
have been imitated by an in-air SVP system by moving the
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Fig. 5. The distortion caused by refraction is nontransversal and
depends on the object distance. When embedded in water, both the
square and the round objects are projected into the same coordinate.
However, in air (the undistorted projection), the objects are projected
into different coordinates. Thus, calibrating radial distortion according to
one of the objects results in an error when rectifying the other. This
happens because the distortion is nontransversal and depends on the
object distance in addition to the radial coordinate.

camera away from the aquarium. However, the center of the
field of view (FOV) is enlarged in water, as if the camera is
closer. This demonstrates that the refraction causes severe 3D
distortions. They confuse human observers, who are used to
a perspective world, as well as computer vision systems
that use a wrong imaging model. A movie that shows the
scene change as the water fills the aquarium is available
in [45].

a shark
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3.1 Entrance Pupil in the Air

We seek the image coordinates corresponding to an object.
We thus study the chief ray from the object to the pixel.
After passing the interface to the air, the ray enters the
camera lens. Consider first Fig. 2. For a perspective lens,

Tg = Tid/f, (9)

where 7 is the radial coordinate of the image pixel
corresponding to the ray. As in Section 2.2, f is the focal
length of the camera in air. Note that in this analysis, we
assume that the sensor is parallel to the interface. Section 7.6
elaborates on the case when this assumption does not hold.
Using (9) in (3) yields

(=) (R o] ==

which relates the world coordinates (ry, zy) to the image
coordinate r;, as a function of d, f, and n. To solve for r;, (10)
results in a fourth degree polynomial. Its four roots are valid
mathematically, but only the root that is valid physically
should be chosen (i.e., no complex or negative values).

The setup in Fig. 2 is generalized in Fig. 7a: Rather than a
thin lens, it represents a camera having a compound lens.
The chief ray is defined as a ray that passes through the
center of the lens aperture (iris). The compound lens is
considered as a black box, characterized by two planes: the
entrance pupil and the exit pupil. The chief ray always enters
the lens module as if it crosses the axis point in the entrance
pupil. It then emerges from the lens toward the detector
array as if it crossed the axis point in the exit pupil.
According to [1], the center of projection of the camera is at the
center of the entrance pupil. Hence, d is measured from the

(10)

one stick

a fence

Fig. 6. A scene imaged by a camera looking into an aquarium, empty (top) and full with water (bottom). On the right side, the red stick in the air is

seen as a fence in water. On the left side, a shark is suddenly apparent.
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Fig. 7. Allens module looking through a flat interface into a refractive medium. The entrance pupil can lie (a) in the air, (b) on the interface, or (c) in the
medium. In all subfigures, the ray is imaged to the same pixel r;, through a fixed focal length f. Moreover, the object distance z,, from the interface is

the same. Despite the same r;, f, 2, the radial coordinate of the object r,

is different in each subfigure. Note that in (c), the lens images the ray as if

the ray comes from the entrance pupil, although in reality, the ray comes from a different direction and is refracted. Estimating an effective focal

length fefective in the medium yields values that increase from (a) to (c).

glass interface to the entrance pupil. Thus, (10) applies to
compound lenses, with these definitions.

3.2 Entrance Pupil in the Glass

In the setup illustrated in Fig. 7b, the entrance pupil of the
camera lies directly on the interface, i.e., d = 0. This special
case is the only one in which the system as a whole has an
SVP. The viewpoint is maintained at the entrance pupil (in
the flat glass). However, the rays passing through this
center of projection change direction due to refraction, as
illustrated in Fig. 7b.

At small angles, 0, < 1, and thus (1) is linearized to
Omedium = Oqir/n . Since n > 1, the angles are smaller in the
medium. Hence, the system (rather than the sole camera)
behaves as if it has a longer effective focal length [20]

(11)

The linear approximation above breaks down as 0,
increases. The nonlinear relation (1) between the ray angles
can be considered as a radial lens distortion. This was
considered as a phenomenon to be modeled by a poly-
nomial function of r; in previous studies [9], [32], [39]. This
numerical approximation required empirical calibration of
the polynomial coefficients.

In contrast, now we give an explicit, closed-form
expression for the distortion created by refraction. Using
d = 0 in (10) directly yields the relation between r; and ry:

feffém,ive|9mr<<1 = nf

i = fnf(zy /)’ —(n? = 1)] 2 (12)
Following (5), in radial coordinates:
Tw = feffective|9‘m_<<1zw/7‘i' (13)

Plugging 7, from (13) in (12), the distortion correction
function is

ol

2
Tiporspcctivc =r|1+ —ri (7‘1,2 — 1) (14)
fcffcctivc | Our <1

Suppose that standard calibration yields feffectivebm <« at
small angles around the axis in situ. Then, (14) directly
corrects for the nonlinear radial distortion if the medium
refractive index n is known. This alleviates the need for
empirical polynomial calibration.

It must be stressed again that only at d =0 can such
distortions be modeled as a mere radial pixel shift in an SVP
system. In all other cases, the model and calibration are
more elaborate, as we describe.

3.3 Entrance Pupil in the Medium

It is important to understand that in some cases, the effective
center of projection of the camera can lie oufside the air
chamber, i.e., inside the medium. This occurs despite having
all of the lens elements inside the air chamber. For instance,
Aggarwal and Ahuja [1] describe a commercial lens module
whose entrance pupil is 6 cm in front of the physical lens
barrel. In such cases, if the lens is adjacent to the interface, the
entrance pupil (thus the center or projection) is effectively
located in the medium. Such a case is depicted in Fig. 7c. In
this case, (10) still applies, but here d is negative.

4 CAusTICS

Since generally the system cannot be described using the
SVP model, we aim to characterize it through a ray map of
the pixels. A ray is a parametric line® whose world
coordinates are (R, Z). This ray is projected to a specific
pixel. Thus, each pixel corresponds to a line in (R, Z). A
parameter o determines the location along the ray

|

where p(ri) = [pr,pz]|’ are the coordinates of the interface
surface and q(ri) = [gg, qZ]T is the ray’s direction unit
vector. From Figs. 2 and 7, note that

R(rj, )

Z(ri, a) (15)

}:pwo+amn»

]T

3. The azimuthal coordinate is not needed since all the chief rays are
meridional rays as defined in [4]. This is true for a camera in air. Since the
interface is perpendicular to the optical axis, the chief rays remain
meridional.
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Fig. 8. The creation of the caustic surface. (Left) Actual rays in the
imaging system intersect inside the air housing in the center of
projection of the perspective camera. (Right) The apparent incident
projections do not intersect, but form a bunching which is the caustic
surface.

Ti

Sin Oy (1) = —=. 16
== (16)
Then,
PR =Ty, bz = 07 (17)
in = sin Gy, (1) = cos{sin_l {sm Gair(ri)] } (18)
n n
Thus, the parametric ray representation is
1
R(ri,a) = ?ri + aﬁsin Oaix (1), (19)
A b
Z(ri, ) = accosq sin™ | —sin Oy (1) | ¢ (20)
n

The differential change in coordinates from (rj, ) to
(R, Z) is expressed by the Jacobian matrix
(dpra +a ?j%r]t) Ir
(B+a®t) o
The locus of the singularities in J represents a surface [6], [12]
to which all chief rays are tangent. This is the caustic [4]. In the
context of imaging, the caustic is regarded as the locus of all
the focal points, i.e., the viewpoints of the system. For
example, in a perspective system, the caustic is a single point.
The creation of the caustic surface is demonstrated in Fig. 8.
The physical path of the chief rays (left) intersects at the
center of the entrance pupil of the perspective camera, after
the refraction. However, there is not a single point in which
the original (incident) rays that are imaged intersect (right).
Rather, they form a bunching, which is the caustic surface.
To find the caustic surface, we find the points where
|J| = 0. Applying this condition to (21) yields

(21)

a= —(qR %I;Z e %[;1‘?) (22)
(q G — qr %ff)
Using (22) in (15)-(18) yields the caustic coordinates
IRV
Reaustic = (1 - ﬁ) (?> d, (23)
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Fig. 9. Caustic of a system having a flat interface with water. The camera
has an FOV of max(6,;;) = 50°. The caustic has radial symmetry which
is violated toward the boundaries of the FOV due to the rectangular
shape of the sensor. The extent of the caustics is O(d), and can often
reach centimeters or decimeters.

()]

Obviously, following (23) and (24), the caustic is not a point
(unless d = 0). Therefore, the system does not have an SVP.

Fig. 9 depicts the caustic in an FOV for which
max(6,;) = 50°. From (23) and (24), both Rusic and
Zeanstic depend linearly on d. Therefore, the dimensions in
Fig. 9 are normalized by d. An immediate conclusion is that
one should place the camera such that d is as small as
possible in order to make an SVP model more valid.

Equations (23) and (24) depend on the ray slope at the
center of projection r;/ f rather than the pixel coordinate r; by
itself. Therefore, the shape of the caustic does not depend on
the location and the position of the sensor. Specifically, even
if the camera rotates and the optical axis is not perpendicular
to the interface, the caustic shape does not change. This is in
compliance with (3), where the ray path from the object to
the center of projection depends solely on d and the objection
location. Nevertheless, when the optical axis is not perpen-
dicular to the interface, the boundaries of the manifold in
Fig. 9 change to fit the projection onto the sensor.

The extent of the caustic in Fig. 9 is in the order of d. For
d = 2 cm, for example, the viewpoint in the image center is
~ 2 cm apart from the viewpoint at the image corners.
Furthermore, when looking at an aquarium, d is on the
order of tens of centimeters, leading to a similarly large
spreading of the viewpoint locus. Note that reducing
max(f,i:) reduces the extent of the caustic. Suppose that
one selects a single point in the caustic to be a representa-
tive viewpoint for an SVP model. If the caustic has a large
spread, the large spread prevents any such point from
yielding a good approximation. Nevertheless, when ap-
proximating the system as a perspective system, the
effective center of projection lies in the region of the caustic
(in [25], this location is termed the fictive center of projection).
Following (23) and (24), for small incident angles (r; < f),
Reaustic = 0. However, —nd. This means, the

-0.5

0.5

(24)

anustic =-Nn

Z caustic —
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effective center of projection is never located in the center of
projection of the perspective camera behind the interface.

When the entrance pupil is outside the lens (Section 3.3),
the caustic shape is flipped inside out, and the entire wide
set of viewpoints is in the medium.

5 NON-SVP CALIBRATION

Calibrating a system which does not have an SVP involves
calibrating a ray map, i.e., the trajectory of the light ray that
each pixel captures. There are nonparametric methods for
calibration of such non-SVP systems [12], [34]. However,
Ramalingam et al. [34] mention stability difficulties, while
the method in [12] may be too complex to implement in a
hostile marine environment. Moreover, both methods in
[12] and [34] require multiple frames. Fortunately, here the
imaging model is parameterized thanks to its physics-based
root. Thus, calibration can focus simply on the unknown
parameters.* Furthermore, the calibration can be based on
two frames.

Based on Section 3, we develop a parametric calibration
process for the flat-interface refractive system. The index n
is assumed to be known since, according to [26], n varies by
less than 3 percent over the entire range relevant to
hydrologic optics, where n ~ 4/3. Nevertheless, n can be a
free parameter that is involved in the calibration process as
in [27]. The same applies to the glass thickness. Usually, it
can be measured or known from manufacturer data, but it
can be incorporated into the calibration as well.

The embedded camera itself, irrespective of the medium
of interest, is an SVP system, modeled as in Section 2.2. The
flat refractive system introduces a single additional para-
meter, d. Overall, the set of parameters of this model is
Q ={d, f,c,k1,k2}. A naive calibration scheme involves
imaging objects in unknown 3D locations and optimizing
the parameters to fit

d Zw
==n+ )

f (fn/r)? +n? —1

(25)

based on (10). Note that r; is the undistorted image
coordinate, obtained from the observed image coordinate
using (6) or a similar model (Fig. 3). Therefore, (25) assumes
lens distortion has been corrected. This calibration scheme
requires additional optimization for extrinsic parameters:
the system position and the location of objects. In addition,
this calibration scheme is nonlinear. Note that ideally, the
calibration approach should minimize the reprojection
error, i.e., using (25) in (10) and minimize errors in r;.
However, such an approach has to handle the fact that 7; in
(10) does not have a closed-form solution.

The easiest optimization of (25) would be obtained if
several objects exist at known 3D coordinates. However,
while the distance z, of the objects can be known, a precise
knowledge of their radial coordinate ry, is difficult to obtain.
Here, we propose a more practical solution that requires
little prior information about the objects. Our method works
well in situ, as we demonstrate in field experiments.

The proposed method requires imaging of a few objects
of a known length sipown and known range z. The objects

4. A physics-based parameter calibration was applied to non-SVP
catadioptric cameras [42] in air.
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Fig. 10. A straight object is imaged for calibration purposes. The object
may appear bent in the raw frame. However, the world coordinates
estimated by the model are unaffected.

should be positioned frontoparallel to the interface and
camera. The range can be obtained by range meters, which
are often mounted on underwater vehicles. Alternatively,
research divers sometimes achieve constant range by
mounting two angled underwater lasers on a camera and
fixing them such that they converge to a dot at a specific
distance. Acquiring a few objects of a known length is easy
by using a few lines on a standard checkerboard calibration
target.” Identifying the object’s extremities, we index these
points as m = 1,2. Their corresponding image coordinates
are (ri1,¢1) and (ri2, $2), where ¢,, denotes the azimuthal
coordinate of a point (Fig. 10). The object may appear bent
in the frame, due to the distortions. Nevertheless, in the
world coordinates, it maintains its straight form.

Based on (25), the corresponding world coordinates
and ry o should satisfy

2y
\/(fn/ri,m)2 + n?—1

where 7i,, are coordinates after compensating for lens
distortion, as in (6). Based on the law of cosines, the object
length should satisfy

: (26)

'Pw.m = ?h,m +

§= \/(%,1)2 + (%,2)2 — 2y 1Tyw2 €OS [P1 — Pal.

Following (26)-(27), the calibrated value for () is the one that
satisfies

(27)

§(Q) = Sknown- (28)

Hence, () is a set of parameters of the image-formation
model that lead to a fit to the known data. This fitting is
easily generalized to work on a set of several measurements
(e.g, a least-squares fit). Recall that if d <0, then the
camera’s entrance pupil is in the medium. As (28) is not
linear, it is worth starting the optimization from a good
initial estimate. An initial estimate for f can be obtained by
calibrating the system using an SVP model [25], yielding
Settective from (11). Then, f = feective/n (this is further
explained in Section 7.1).

The calibration of this system can be simplified by
calibrating the perspective camera in air prior to using it
underwater. Then, the inherent properties f, ¢ and the lens
distortion parameters x, k2 of the perspective camera are

5. When having no prior knowledge on the objects, it is common to use a
calibration plane having a geometry of the type mwzy + myy +
m3zy + 4 = 0. Then, the calibration process should also solve for the
parameters II = [mry, mo, 73, 74, in addition to €, using (6) and (25) together
with the plane equation.
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Fig. 11. Calibration using a single object. (A) The fitting problem: an object and its image projection. The initial guess for f and d does not fit the
physical mode. (B), (C) Two possible solution pairs (d, f) for the same object and its corresponding projection. (D) A solution can also be obtained

when using a wrong value of z.

measured a priori, as in [14], [15], and [50]. The only
parameter that is left to calibrate in water is d, as done in
[22] and [44]. This is convenient, but can be applied only if
the zoom or focus settings are not changed in situ.
Therefore, we do not elaborate on this option here.

5.1 Well Posedness and Stability

How many objects are needed to perform the calibration
using (28)? Is their position significant? For the discussion
here, let us assume that c and « are known and that we only
seek f and d. Obviously, using just a single object to assess
two continuous parameters is expected to be ill-posed.

Fig. 11A shows a fitting problem: an object and its image
projection. The initial guess for f and d does not fit the
physical model. Figs. 11B and 11C show two possible
solution pairs (d, f) for the same object and its correspond-
ing projection. Fig. 11D shows that a solution can be
obtained also for a wrong value of z,, with different values
for f and d. This ambiguity is also seen in (25). There, the
estimation of d depends on f; for every value of f, there is a
suitable estimated d.

Fig. 12A shows projection of three different objects onto
the image plane through water. The objects are located at

= 50[cm]. Define ¥} as the infinite set of possible solution
pa1rs (d, f), derived based on object j. For every object, ¥, is
a different gcurve in the (d, f) plane, as shown in Fig. 12B
The curves® resemble a straight line but a close look shows
that they are not exactly straight, matching (26). As V; is
different for each object j, the solution we seek is 2 = N;¥;.
Therefore, more than a single object is needed for
calibration. However, as seen in Fig. 12B, two objects (#1
and #3) that lie in the center of the FOV generate curves
that are very similar and make the calibration ill-condi-
tioned. This can be solved by using an object (#2 in
Fig. 12B) that is imaged toward the boundary of the frame.
There, refraction increases, making the calibration more
sensitive and well conditioned.

An alternative to using multiple calibration objects is to
use a single object in multiple known ranges. A simulation
of such a situation is demonstrated in Figs. 12C and 12D.
The same object is projected to different coordinates when
imaged from different distances. This yields two different
solution sets ¥, . The calibration result is their intersection.

Our calibration method assumes that the objects are
placed in parallel to the interface (and the sensor). In
practice, there might be some deviations from this assump-
tion. Fig. 13(left) plots the expected error in the calibrated

6. The curves were obtained by calculating ¢, for every set of d, f

values f and d as a function of the relative range difference
between the extremities of the object, Azy;,
Deviations from the fronto-parallel assumpt1on affect f
more than d. Fig. 13(right) plots the expected error in f and
d as a function of the error in absolute range, assuming the
object is parallel Az,. In this case, the value of d is more
sensitive to error in range measurement.

6 EXPERIMENTS

6.1 Calibration

We used a Nikon D100 camera and a Nikkor 24-85 mm lens.
They were housed in a Sealux underwater housing having a
flat port PN94. We worked underwater in the ocean. The
setup is shown in Fig. 14a. We used a checkerboard pattern
as a calibration target (Fig. 14b). Each square is
27.5 mm x 27.5 mm. The known sizes enabled us to select,
after image capture, a few lines of known length. Distances
to the interface were measured using a simple measuring
tape. Then, we applied (26)-(28) on them. We show results

. 2000r{A) flmm] iB)
[pixels]
1500 0bj 1 O")\ 16
solution set
1000 ) 15
o
14 solution set |
500 A% )
8 solution set ¥,
500 1000 1500 2000 [hixe|g] 3000 0 20 40 60 dfmm] 80
2000} flmm (D}
[pixels]
1500 16| fsolulig(r; set
2=100[cm] or z=50[cm]
1000 9
- z=50[cm] 14 solution set
for z=100[cm]
13|
0
O 500 1000 1500 2000 (i 05000 0 20 40 80 4imm®°

Fig. 12. (A) Projection of three different objects onto the image plane,
through water. The objects are located at z, = 50[cm]. (B) For every
object j, the set ¥; is a different curve in the (d, f) plane. Thus, using at
least two objects, the intersection of the sets provides the calibration
result. Two objects (#1 and #3) that lie in the center of the FOV
generate curves that are very similar and make the calibration ill-
conditioned. This can be solved by using an object (#2) that extends to
the extremities of the FOV. An alternative to using two or more
calibration objects is using the same object in at least two different
known distances. The projected coordinates are shown in (C). This
yields (D), two different sets of possible solutions, one per distance. The
calibration result lies in their intersection.



TREIBITZ ET AL.: FLAT REFRACTIVE GEOMETRY

0.06

0.04 /’I \‘\\./ ______ 06
0.02} R - 0s ~
Gl N Ad[%] 04 d[%] /
-0.02 03
-0.04 L . 02
008 Af(%] e
008 opT T Af1%]
0.1 01 -
0 0.05 0.1 Alwl.z[%] 0.2 0 0.05 0.1 AZW [%] 0.2

Fig. 13. The expected error in the calibrated values f and d as a function
of the relative range difference between the extremities of the object,
Azy12 (left) and the error in absolute range, assuming the object is
parallel (right). The calibration was done by simulating imaging a single
object at z, = [58 cm, 88 cm, 134 cm]| with [d, f] = [45 mm, 14 mm].

of our method in two sessions. In each session, we used the
lens in different zoom and focus settings. In session 1, z, =
48 cm and the calibration yielded [d, f] = [7.9 cm, 24.3 mm].
In session 2, z, = 78 cm, and [d, f] = [4.2 cm, 58 mm]. We
conducted similar experiments in a swimming pool
(Fig. 15), in which [d, f] = [7.4 cm, 26 mm]. Note that the
value of d changes significantly when changing the lens
setting f.

6.2 Validation

The calibration result d can now be applied for measuring
unknown objects that are placed in distances that are
generally different from the calibration distance. For
validation, we applied this measurement method on
objects with known distances that we later measured
independently by a ruler. Fig. 14c shows examples of such
objects that we measured. On each imaged object, we
applied (26) and (27), using the values of d,f, and &
calibrated in Section 6.1. To show the generalization of the
model, about half of the measured validation objects are at
a distance z, that is different than the one used during
calibration. The estimated sizes of the validation objects are
§(0Al, f,¢). Table 1 compares §(CAZ, 1, ¢) to the ground truth
length sinewn Of each object.

6.3 Comparison to the Known Art

To demonstrate the significance of our approach, we
compare it to the current practice. The current art [11], [29],
[31], [32], [39] of vision through a flat interface has relied on
the perspective model, regarding the refraction effects as a
radial polynomial lens distortion. To emulate this, we used
an off-the-shelf camera calibration toolbox [5]. This toolbox is
based on [15]. It uses calibration images of a checkerboard
pattern taken in different positions. We took such under-
water images using our system. Then, the standard process
[15] obtained the camera parameters of the perspective
model, particularly feffective and the presumed radial distor-
tion parameters. In session 2, we got feffective =1.3f. We
compensated the images for the estimated radial distortions.
Then, we used feffcctivo to find the objects” world coordinates
prespective yyging: (30). Using 72esPective jn (27) yielded an
estimate for the object length $,,s,, Wwhich appears in Table 1
for comparison. Our physics-based model 3({2) accounts for
the non-SVP nature of the system. It is significantly more
accurate: 3(Q2) fluctuates by ~ 1-2 percent around the correct
value. In contrast, the error in 3., is =~ 10-15 percent.
Moreover, $persp is biased. Similar results were obtained in the
swimming pool.
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7 WHEN DOES AN SVP APPROXIMATION APPLY?

As discussed in previous sections, the system does not have
an SVP and modeling it as a perspective system might yield
errors.” Thus, Section 5 discussed calibration of the physical
model. However, depending on the system and scene
parameters, the errors may be small enough and thus
negligible in certain applications. Note that although
calibration of the accurate model is possible, it might be
somewhat more complex than calibrating a perspective
model since the physical model has an additional parameter
(d). In addition, many existing methods rely on the
perspective model. The underlying math, and in particular
the perspective epipolar constraint, makes it easy to work
with cameras modeled by perspective projection.® Thus,
there is a trade-off between accuracy and convenience.
Suppose we attempt to approximate the system using an
SVP model. Such an attempt would yield errors. In this
section, we calculate by simulation the expected SVP model
errors, for a range of system and scene parameters.

7.1 Aliasing the System as SVP

Sections 3.1 and 3.3 show that when d # 0, the system does
not have an SVP. But, can it be modeled as a perspective
projection with radial distortion? Fig. 5 demonstrates why
the distortion is not merely radial. Both the square and the
round objects are projected into the same coordinate in
water. However, in air (undistorted projection), they are
projected into different coordinates. Thus, calibrating radial
distortion from an object at a distance z; results in an error
when using it to rectify another object, at a different
distance zy2. This happens because the distortion depends
on the object distance in addition to the radial coordinate.
In this paper, we show that a flat refractive system does
not have an SVP. Nevertheless, it is possible to treat it as an
SVP system and calibrate it using the model in Section 2.2.
In fact, this is what has been done in the past. As discussed
in Section 4, such an effective center of projection lies in the
region of the caustic surface. For every ray in the system

[Zw — Zeaustic (Ti)”ri — Reaustic (Ti)]
[T'W + R(:austi(:(ri)]

where fefrective 18 different for each value of r;.

Fig. 16 plots ferective as a function of rj/f. As expected,
since the system is not really perspective, fefrective is different
for different viewpoints. During calibration as an SVP
system, we aim to find a single value for the focal length,
foftective- This focal length would be valid for a certain focal
point location (Refrectives Zeffective)- As the system has radial
symmetry, we expect to get Refiective = 0, i.e., the optical axis
does not move. We denote by " the image
coordinate that results from using a perspective projection
through (0, Zeffective) With focal length fetfective,

feffective (ri) = ) (29)

Tperspective _ fettectiveT'w

i =

Jeffectivelw 30
Zw — Zeff?ctive ( )

7. As discussed in Section 4, the error can be reduced by physically
minimizing d, i.e., placing the camera close to the interface. However, the
location of the actual center of projection along a compound lens is not
fixed. Therefore, physical control over d is limited.

8. Recently, Chari and Sturm [7] have developed multiview constraints
for the case of two cameras behind a single refractive plane.
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Fig. 14. Calibration and validation experiments done in the ocean while scuba diving. (a) The imaging setup. (b) The checkerboard chart used for in-
situ calibration. Specific line lengths are marked. (c) Underwater objects are used for validation of the calibration. They were measured

independently.

as illustrated in Fig. 3. The resulting focal length of an SVP
calibration is a value that minimizes the error in (30) for all
points used during calibration. Note that, in water, n ~ 4/3;
thus, (n? —1)~0.77. At small incident angles, r; < f.
Consequently,

(fn/ri)> (n* = 1). (31)

Thus, (29) yields ffective = feftective|g,, <1 (11) at the limit of (31).

How does the object distance affect the distortion? To
obtain an expression for the distortion, we rewrite (10) to fit
the SVP model described in Section 2.2. This means that we
assume that the system has an effective focal length Foftective
(30), and any deviation from the relation in (30) is described
by a distortion te‘rm.9

Recall 7P from (30). A distortion correction
function should relate the refracted image coordinate, r;,
to the perspective coordinate, 7", Plugging r, from
(30) into (10) yields the expression for the desired relation,
providing the distortion correction function:

f effective d

Zeffective)

perspective __

1 ‘”&%—
(32)

f effective w

+

(zw - Zeffective)\/(fn)2 + rj?(nZ - 1)

Equation (32) does not depend on the way feftoctive 1S
assessed. The first term on the left-hand side of (32) shows
that the distortion depends on the object distance z,, as
demonstrated in Fig. 5. Define the relative distortion as

erspective
T — persp

per;pective : (33)
i

"7:

Fig. 17 plots the relative distortion 1 described by (33) for
different values of z,. Here, we used f = 2,500[pixels],
d= 40[111111], feffective = fn, and Zeffective = —nd (24). When z,
increases, the first term on the left hand-side of (32)
decreases until it becomes negligible, practically eliminating
the distance dependency. Then, (32) degenerates to (14) and

9. Recall that the magnification effect caused by the water interface
is linear and is expressed by the change in the effective focal length.
The distortion we seek to describe here is the deviation from linear
magnification.

the system becomes practically perspective. This is demon-
strated in the following simulations.

7.2 Defining the Error
The error in using an SVP model to calibrate a flat refractive
system is calculated as follows:

1. Randomly choose 3D coordinates of N., object
points.

2. Project the N.y object points into the image plane
using the flat refractive physical model (10).

3. The obtained image coordinates and the known 3D
locations are used to perform traditional SVP
calibration, by optimization according to the model
in Section 2.2.

4. Randomly choose 3D coordinates of a different set of
Niest Object points, each being at a viewing angle 6,
(see Fig. 2).

Fig. 15. Calibration experiment done in the pool. (a) The imaging setup.
(b) Underwater calibration objects.

TABLE 1
| session | object | 2P ‘ Sknown | 5(d, f,¢) | Spersp |
A 48 11.5 11.5 8.9
B 48 14.0 13.3 10.7
C 48 | 20.5 20.0 15.7
1 A 134 11.5 11.1 10.1
B 134 14.0 14.0 12.8
C 134 20.5 20.6 18.6
D 134 26.0 26.7 24.3
E 134 28.0 29.2 26.8
A 153 11.5 11.6 10.4
B 153 14.0 14.3 12.7
5 C 153 | 20.5 20.5 18.7
A 78 11.5 11.1 9.7
B 78 14.0 13.6 11.9
C 78 20.5 19.3 17.0

Results of the validation experiments. Units are cm.
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function of the incidence ray slope in air r;/f. In practice, the value of
Jeftectivelg,, < d0€S Not depend on z,, and has a very small dependency
on d. Here, we used d = 2 cm.

5. Project the new Ny 3D locations onto the image
plane twice: first, using the SVP calibration results,
yielding r$VF (see Fig. 3), then, using the correct
physical model in (10), yielding riet.

6. Calculate the error.

The error is defined as follows:
&(0ur) = 735 (Buie) = i (Oui) -

Here, j is the experiment index for a certain set of
Nea calibration points and Ny test points. We repeat each
experiment Ng,mple times and then average the error for each
value of 0,;,:

(34)

Nample
_ 1 <
E(Oair) = N ]Ezl €;(Bair)- (35)

The maximum error in the entire FOV for a certain setup is

Emax = Max E(Oai). (36)

0. €FOV
Note that performing step 3 in the real world usually
involves estimation of the 3D locations of the objects. In our
simulations, we alleviate the need for this and thus assume
ideal calibration, in which the 3D locations of the calibration
objects are known.

7.3 Simulation Parameters

As seen in (23) and (24), the extent of the caustic increases
with the incoming angle. Hence, increasing the in-air FOV
makes the SVP approximation less accurate, yielding larger
reprojection errors. Therefore, for fair comparison between
different focal lengths, we used a varying CCD array size
(in pixels) and set a constant maximum FOV max(6,;) of the
camera in air.

To generalize the simulation, we set the parameters
relative to the pixel size p. As pis O(1 — 10 pm) and f and d
are in orders of millimeters, define f = f/(1000p) as the
relative focal length and d =d/(1000p) as the relative
distance of the center of projection from the interface. The
distance to the objects is in the order of meters; therefore
we use normalized units Z = z/(10°p). In our simulations,
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Fig. 17. Apparent (relative) radial distortion n as a function of the object
distance and image location. We set d = 40[mm], f = 2,500([pixels].
There are two interesting things to note here. First, in the case of d = 0,
i.e., when the system has an SVP, the distortion is more severe than in
the case of d > 0. Second, as the distance of the object increases, the
distortion becomes similar to the SVP case of d = 0. Thus, for distant
objects, calibration errors stemming from the perspective model are
small.

we set the pixel size p=7.8 ym, corresponding to a
Nikon D100. Then, the range f,d € [1,8] corresponds to
f=7.8-62mm. The range Z € [0.65,6.5] corresponds to
0.5-5 m. As a result of using normalized units, the results
are insensitive to the simulated pixel size. We did not vary
the thickness of the interface and set it to 1 cm. The index of
refraction of the glass used is g = 1.46.

Stable calibration of an SVP model in the presence of
distortions as described requires many calibration points.
Therefore, in this simulation, we use N = 50 points (a
number which might be difficult to obtain in situ) for SVP
calibration, to achieve low calibration errors. The N = 50
test points are distributed uniformly across the FOV. We set
Nsa,mple = 100.

As discussed in Section 7.1, the distortion depends on the
object distance. Nevertheless, for each fixed distance,
the distortion is transversal. Thus, if the test object distances
are kept approximately constant, then the calibration object
should be at the same distance, to conform to the
transversal distortion model. Such an approach, where all
objects share the same distance is feasible if the imaging
system has a range meter, such as sonar. For example,
Hogue [16] recalibrates the camera whenever the imaging
distance changes.

On the other hand, what happens if the distances of the
test objects vary? Then, the objects used for SVP calibration
should be at a variety of distances as well. Thus, in the
simulation, we explore two cases for SVP calibration. First,
the distances of the calibration and test objects are relatively
uniform. Second, the calibration and object distances vary
within each session.

7.4 A Constant Imaging Range
In this section, we explore the errors that result when using
a relatively uniform range. We used six distances
Z € [0.65 — 6.5]. For each value of Z, the calibration points
are distributed around that Z, with slight perturbations,
having a standard deviation (STD) of 5 percent.

Fig. 18 plots &(0,;:) for the case f=6,d=6 (correspond-
ing to 39[mm] in a Nikon D100), for different values of Z and
max(6n;;). The results are presented for two values of Z,
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FOV = 40)

Fig. 18. Reprojection errors £(6,;,) [pixels] when calibrating and imaging
objects at similar distances. We show two cases of two different values
of z. Here, f = 6,d = 6. The error is not very sensitive to the distance. It
increases fast at the edge of the FOV.
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Fig. 19. Reprojection errors e,,.x [pixels], when the calibration objects
are in distances similar to those of the imaging objects. At
max(6.;:) = 30°, the errors are relatively small. They decrease with the
distance. The error is slightly sensitive to d only at short range. At
max(f,;;) = 40°, the error is insensitive to Z and d. Decreasing p relative
to f or increasing max(6,;,) increases the errors.

since the error is not very sensitive to the distance. The error
increases fast at the edge of the FOV.

Fig. 19 plots e for different values of f, d, and z. At
max(6n;;) = 30°, the errors are relatively small and decrease
with the distance (as expected in Section 7.1). At short
range, the error increases with d. At max(fa;,) = 40°, the
errors are insensitive to Z and d. Decreasing p relative to f or
increasing max(f,;;) increases the errors (in pixels). Atd =0,
the error is not null. This happens since the perspective
distortion function (14) is not polynomial. Thus, the
polynomial approximation (6) cannot describe it comple-
tely, and this induces errors.

7.5 Unknown Imaging Distances

Section 7.4 showed that calibrating and working at the
same distance can reduce the errors significantly. What
happens when the SVP calibration distance does not match
the distance of the objects? Fig. 20 shows what happens
when the SVP calibration is based on objects at a specific
distance (2 =1.3) but tested on objects at a different
distance (Z = 6.5). The errors in this case are very high.
Therefore, if the distance of the objects in the imaging is
unknown, SVP calibration should be done on objects at a
variety of distances.

As demonstrated in Fig. 20, when the distances of the
objects during the imaging session are unknown, calibration

JANUARY 2012

Fig. 20. Reprojection errors e, [pixels] for object distances different
than that used during calibration. Calibration was done on objects in
zZ = 1.3 and the test objects were placed in Z=6.5 (FOV = 40°). The
errors are large.
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Fig. 21. Reprojection errors £(6,;.) [pixels] when calibrating and imaging
objects at unknown distances. Here, f =05 and d varies. The error
increases with d.

should use objects that are spread in the entire potential 3D
scene domain. In this section, we calculate the errors in this
scenario. The calibration points have distances uniformly
distributed in the range z € [0.65 — 7.8]. Then, we calculate
€(Pair) for objects whose distances are also uniformly
distributed there. Fig. 21 plots £(6,;,) for f = 5 and different
values of d and FOV. Also here, the error increases fast at
the edges of the FOV. However, significant errors are also
encountered in 6, € [10 — 20]. The error increases with d.
Fig. 22 plots £(0,;,) for a few setups. The error increases both
with &, f, and the FOV.

7.6 Rotation of the Camera inside the Housing
Until now our analysis focused on a setup in which the
camera sensor is parallel to the flat interface. However, slight
camera rotation might cause misalignment.'® Rotation
around the optical axis does not effect our analysis as the
problem has radial symmetry. However, rotation around a
transversal axis means that the sensor plane is not parallel to
the plane of the interface. As discussed in Section 4, such a
rotation does not change the caustic. However, it effects the
projection to image coordinates and thus changes the prior
relevant analysis. Now, we try to evaluate the errors that
stem from improper alignment of the sensor relative to the
interface, as demonstrated in Fig. 23(left). The angle between
the sensor and the interface planes is denoted by 3. In this
case, the errors are not radially symmetric. Fig. 23(right) plots
an example of £(6,;,) for the case of unknown distances. The
sensor is tilted around the z-axis. The test points are spread
along a line in an angle of /4 with the z-axis. Here, f = 5,
d=5, and max(6,,) = 40°. The error relative to =0
increases everywhere, particularly at the edges of the FOV.
To decrease these errors, the tilt angle § can be incorporated
into the calibration process, as done in [44].

10. Misalignment in omnidirectional cameras was studied in [40].
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Fig. 22. Reprojection errors e, [pixels] when calibrating and imaging
objects at unknown distances. The error increases both with d, f, and

the FOV.
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Fig. 23. (Left) The imaging system when the CCD is not parallel to the
interface. (Right) Reprojection errors &(6,;) in this case. Here, f =5,
d =5, FOV = 40°, and the distances are unknown. The CCD is tilted
around the z-axis. The test points are spread along a line in an angle of
«/4 with the z-axis. Even a small tilt angle § = 2° induces large errors. In
addition, the errors are asymmetric.

7.7 Conclusions

The errors in the simulation appear small and bearable
when the imaging distances are kept constant. Note that
Kwon and Casebolt [19] reported appreciable errors when
doing geometrical calculations underwater. This might be
because the situation in the simulation is simplified: Both
the 3D locations and the exact image coordinates of the
objects are known. In real life, there is often uncertainty in
these attributes. This increases the error. For example,
automatic algorithms to identify corners of a checkerboard
pattern often fail in the presence of severe distortions. In
addition, the simulated camera behind the interface has no
lens distortion. The errors stemming from automatic corner
detection or lens distortion may accumulate during the
process of 3D estimation and reprojection, resulting in
errors that are detectable at the end of the process.

Our simulation showed that the errors in the case of a
constant imaging range are significantly smaller than in that
of unknown distances. Thus, in a constant range, SVP
camera models can often be used, as shown in [16].
Increasing max(f,;) from 30 to 40 degrees highly increases
the errors in both cases. Therefore, the SVP approximation
probably should not be used in a wide FOV, e.g., higher
than 30 degrees. In addition, as shown in Section 7.6, proper
axial alignment of the camera relative to the interface is
important. This should be considered versus alignment
issues with dome ports when designing a system [18].

8 3D ERRORS

Until now, we have examined 2D reprojection errors.
Nevertheless, using a wrong model has major implications
in 3D geometrical applications such as stereo or size
measurement. Assume correspondences between pixels
are correctly found in a stereo pair [43] taken by a flat
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Fig. 24. 3D errors that stem from the errors in the SVP approximation.

refractive system, despite the failure of the perspective
epipolar constraint. Then, depth estimates using an SVP
approximation are incorrect, as this approximation does not
describe properly the pixel-to-ray mapping (15). The
reprojection errors in pixels presented in Sections 7.4 and
7.5 can be used to assess 3D errors in other setups, with no
need for further simulations.

Consider Fig. 3. There, a 3D object is imaged using a flat
refractive system through a physical pinhole. The SVP
approximation projects the same object through the
effective pinhole with focal length feffécti\,ve to the coordinate
PPt Then, a distortion term y is added (8), resulting in
the SVP image coordinate r$V". The difference between the
SVP projection r$VF and the actual image coordinate r; is
the error, €. Fig. 24 demonstrates the inverse process, where
image coordinates are projected into 3D space, as done for
3D calculations. The physical image coordinate is compen-
sated for the distortion approximately by x. Then, the image
pixel is backprojected through the effective pinhole. This
results in an error since the perspective backprojection was
supposed to originate from 7P approximately
¢ pixels away. Thus, the error in 3D space stems from the
difference between the two dashed rays in Fig. 24.

Let us look, for example, at a stereo setup where both
cameras have a symmetric configuration, as shown in Fig. 24.
The error in the distance estimation is the difference between
the axial coordinates of intersecting corresponding rays. In
Fig. 24, the wrongly estimated distance is Zy, as opposed to
true object distance z,. By simple trigonometry:

£ —
Fe T AT e+ Tipcl-spcctivc (ZW - ZCffCC‘iVC)' (37)
Thus, for example, an error of € = 1 pixel out of r =400
pixels results in an error of |z, — 2| ~ 2.5 mm at z, =1 m
(for Zeftective < 1 m). This is in agreement with the order of

result magnitude in [18].
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Stereoscopic distortions caused by refraction are also
relevant for biological models. Barta and Horvath [3] and
Schuster et al. [38] studied how submerged fish see aerial
objects.

9 DiscusSION

We suggested here a physics-based model for an imaging
system having a flat refractive interface. The paper reveals
that such a system does not have an SVP. The caustic extent
is O(d) and thus can be significant. This yields significant
3D distortions. For calibration of a flat refractive interface
system, we presented a method that can be applied in situ,
even if the lens settings are changed. It can be based on a
single frame. In real experiments, our method yielded
results that are significantly more accurate than the SVP
model. These results have implications in the wide range of
fields that use flat-interface systems (see Section 1).

In this paper, we neglected the effect of the lateral shift
caused by the glass as it is smaller in magnitude than the
shift caused by angular refraction. Nevertheless, as the
glass thickness increases, the effect of the shift increases and
may become relatively significant. This scenario requires
additional analysis.

When attempting 3D stereo reconstruction through a
flat interface, assuming an SVP model is likely to yield
significant errors. For stereo, there is need to use the ray
map, which is calibrated in this paper. Closed-form stereo
in this system requires additional theoretical work, maybe
using the epipolar constraint for flat-interface systems
introduced in [7]. Other possible extensions include self-
calibration methods to alleviate the need for a known
calibration object. The physics-based geometric model can
be expanded into a radiometric falloff model, based on
Fresnel’s laws of refraction. Defocus analysis as in [2] is
also beneficial.

In addition, Section 7 presents a framework for analyzing
the effect of an SVP approximation on a non-SVP system.
This framework can be applied on other non-SVP systems.
Specifically for underwater applications, it can be used for
assessing the errors stemming from a misaligned refractive
system having a dome-shaped interface.
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